Что такое сила отталкивания помогите. Сила отталкивания

Жидкость Леннард-Джонса между двумя инертными стенками, а - Зависимость приведенной плотности от расстояния между стенками для трех значений приведенной температуры. б - Усиление притяжения вследствие понижения плотности. В подходе Гамакера при расчете притяжения ^ham плотность в зазоре принимается постоянной и равной объемной плотности

Осцилляторные силы обнаруживаются также в среде линейных алканов, но они не проявляются в среде разветвленных алканов. Подобные силы зарегистрированы между поверхностями слюды в водных растворах, но в этом случае обнаружен более короткий период осцилляции по сравнению с ОМЦТС, что объясняется разницей молекулярных размеров воды и ОМЦТС.

Гидратные силы отталкивания

Легко представить, что заряженная поверхность или поверхность, несущая противоположные заряды, при погружении в водный раствор будет связывать один или несколько слоев молекул воды, гидратирующих поверхность таким же образом, как растворенный ион формирует гидратную оболочку. Приведение таких поверхностей в контакт вызывает их дегидратацию. Можно предположить, что в результате возникают гидратные силы отталкивания.

Осцилляторные силы между поверхностями слюды в инертной силиконовой жидкости, диаметр молекул ОМЦТС составляет ~9 A

Силы, действующие между поверхностями слюды в среде линейного и разветвленного алканов

Было обнаружено очень сильное, короткодействующее взаимодействие между липидными бислоями. Расстояния, на которых проявляется это взаимодействие, лежат в диапазоне 10-30 А. Отталкивание экспоненциально уменьшается с увеличением расстояния между липидным монослоями. Для измерения соответствующей силы была использована методика, основанная на измерении осмотического давления. Аналогичным образом методом измерения поверхностных сил с помощью специального прибора были измерены силы отталкивания между поверхностями слюды. Гидратные силы отталкивания, по-видимому, действуют как между нейтральными, так и между заряженными поверхностями. Несмотря на то что поверхности слюды жесткие, а би-слойные структуры - гибкие, оба исследования дали удивительно хорошо согласующиеся результаты. Отталкивание между поверхностями слюды наблюдалось и в других жидких средах.

Проведенные эксперименты привели к интенсивным поискам теоретической интерпретации результатов. Одной из причин отталкивания предложено считать структурную поляризацию или поляризацию водородных связей на поверхности. В случае липидных бислоев механизм отталкивания может быть обусловлен возможностью волнообразных деформаций и взаимодействием отображения заряда. Недавно было высказано предположение, что липиды "выдавливаются" в растворитель; при сближении поверхностей возможность образования выступов уменьшается, что приводит к появлению отталкивания. Этот механизм близок к идее отталкивания из-за волнистости. Разница заключается главным образом в масштабе флуктуации. Исходная модель основана на "волнистости" с большой длиной волны, тогда как модель "выступов" справедлива на расстояниях, сопоставимых с молекулярными размерами.

Гидратные силы отталкивания между поверхностями слюды в растворе электролита. Следует отметить, что отталкивание возникает только при концентрации соли > 1мМ.

Моделирование методом Монте-Карло обнаружило короткодействующие силы отталкивания даже для идеально гладких поверхностей. Необходимо сказать, что как гидратные силы отталкивания, так и гидрофобное притяжение, которое описано ниже, можно достаточно просто моделировать, варьируя силу взаимодействия между растворителем и поверхностью. Сильное притяжение растворитель-поверхность автоматически приводит к появлению силы отталкивания поверхность-поверхность. Если поверхности инертны, т.е. нет сил притяжения между поверхностью и растворителем, то между поверхностями действует сольватационное притяжение. В обоих случаях взаимодействие ограничено расстояниями менее 100 А.

Гидратные силы отталкивания и гидрофобное притяжение для смачиваемой и несмачиваемой стенок соответственно. Теоретические данные получены из обобщенной теории Ван дер Ваальса

Гидрофобное притяжение

Накоплено множество результатов измерений силы, действующей между гидрофобными поверхностями. Обычно для исследований используют поверхности слюды, модифицированные монослоями углеводородных или фторированных групп, обращенных к воде. Эти исследования привели к неожиданному результату: было обнаружено, что между такими поверхностями сила притяжения действует на больших расстояниях. Притяжение распространяется на сотни ангстрем. При этом притяжение нельзя объяснить силами Ван дер Ваальса в рамках подхода Гамакера. Кроме того, на него практически не влияют добавки солей. Экспериментально наблюдаемое дальнодействие невозможно объяснить аналогично тому же типу гидрофобного взаимодействия, с которым мы встречались, например, при взаимодействии двух атомов неона в воде. Хотя принято считать, что "обычное" гидрофобное взаимодействие проявляется только на близких расстояниях, реально его величина может увеличиваться по механизму уменьшения плотности.

Считается, что гидрофобное притяжение ответственно за быструю коагуляцию гидрофобных частиц в воде и играет важную роль в фолдинге белков. Однако, как и в случае гидратных сил отталкивания, теоретические разработки гидрофобных взаимодействий практически отсутствуют. Одним из возможных механизмов, способных обеспечить притяжение, может быть образование полостей, т.е. маленьких пузырьков газа, на гидрофобизованной поверхности слюды. В зависимости от условий такая кавитация вызывает увеличение силы отталкивания или притяжения. Другая возможная причина притяжения между гидрофобизованными поверхностями заключается в том, что поверхности локально не нейтральны и корреляция между положительно и отрицательно заряженными участками вызывает притяжение.

Силы деплеции

Для кристаллизации белков обычно используют полиэтиленоксид. Считается, что ПЭО вызывает силу деплеции между макромолекулами белка. Другими словами, ПЭО не может проникать в пространство между молекулами белка из-за очень сильного ограничения конформационной свободы полимерных цепей ПЭО. Накапливаясь в растворе, ПЭО создает осмотическое давление, действующее на молекулы белка. Это очень интересный механизм, в том смысле, что вводимый полимер влияет на взаимодействие между коллоидными частицами, не находясь между ними! Диапазон сил притяжения деплеции по порядку величины совпадает с радиусом инерции полимерной молекулы. Для идеального полимера радиус инерции равен г1/2, где r - степень полимеризации.

Иногда на больших расстояниях до проявления сил притяжения деплеции появляются силы отталкивания. Это явление часто называют деплеционным отталкиванием. И притяжение, и отталкивание этой природы наблюдались экспериментально и описаны теоретически.

) и его команда из школы инжиниринга и прикладных наук Йельского университета экспериментально выявили отталкивающее действие света. Тем самым они завершили построение картины биполярного взаимодействия близкорасположенных наноразмерных волноводов, по которым проходят пучки излучения с определёнными параметрами.

В прошлом году Тан и его коллеги скомбинировали наномеханику и нанофотонику, впервые построив устройство, в котором для контроля положения компонентов применялась боковая (перпендикулярная лучу) сила воздействия со стороны света.

Это взаимодействие электромагнитных волн и оптической системы не следует путать с давно известным фронтальным давлением света, падающего на поверхность того или иного тела.

Существование боковых сил (также называемых оптическими связывающими силами — optical binding force) теоретики предсказывали с 2005 года, причём предполагалось, что эти силы могут быть как отталкивающими, так и притягивающими. Последние как раз удалось обнаружить в прошлом году.

А вот теперь та же группа исследователей построила микроскопическое устройство, в котором добилась проявления как силы притяжения, так и силы отталкивания между соседними световыми пучками, пойманными внутри волноводов. Причём физики нашли способ регулировать эти силы по своему желанию.

a – так выглядит новое устройство, созданное Таном; b – сердцевина схемы при более крупном увеличении (на левом кадре она обведена красной рамкой) (фото Mo Li et al.).

«Это завершает картину, — заявил Тан. — Мы показали, что действительно существует двухполярная сила света с притягивающей и отталкивающей компонентами». Физики поясняют, что существование оптических связывающих сил увязано с уравнениями Максвелла , а по физической сути данные силы являются родственниками силы Казимира , которая появляется из-за квантовых флуктуаций в вакууме.

Для проявления этой новой силы учёные разделили луч инфракрасного лазера на два отдельных потока, проходящих по кремниевым нановолноводам, отличным по длине. После завершения такой петли эти волноводы подходили вплотную друг к другу (расстояние в ряде опытов менялось). В этот момент два бегущих рядом пучка оказывались со смещёнными друг относительно друга фазами.

В зависимости от величины этого сдвига, выяснили экспериментаторы, и меняется (по величине и знаку) боковая сила взаимодействия этих пучков, которую они передают на удерживающие их волноводы. И хотя сила была мала (порядка нескольких пиконьютонов), её удалось измерить и выявить закономерности: открытая сила зависела и от сдвига фаз, и от мощности излучения, и от расстояния между нановолноводами.


a – схема двух волноводов, подвешенных над полостью (чтобы они могли изгибаться под действием света); b – зависимость силы (пН/мкм.мВт) от расстояния между волноводами (нм) и сдвигом фаз; c – амплитуда и знак боковой силы в зависимости от разности фаз при расстоянии между световыми лучами в 400 нм; d – картина распределения притягивающих и отталкивающих сил в зависимости от разности фаз двух лучей и дистанции между волноводами. В последних двух случаях шкалы силы также размечены в пН/мкм.мВт. На всех графиках и рисунках красным отмечено действие сил притяжения, синим – отталкивания (иллюстрации Mo Li et al.).

«Силы взаимодействия света интригуют, поскольку работают противоположным образом по сравнению с заряженными телами, — говорит один из авторов эксперимента Вольфрам Пернайс (Wolfram Pernice). — Противоположные заряды притягивают друг друга, тогда как сдвинутые по фазе световые лучи отталкиваются».

Команда Тана полагает, что придуманная ими технология когда-нибудь пригодится в создании быстрых, компактных и экономичных телекоммуникационных устройств. В таких схемах компоненты могли бы взаимодействовать между собой при помощи пойманного в волноводы света, что помогло бы кардинально сократить число проводников.

Результаты работы её авторы изложили в статье в журнале Nature Photonics (её можно прочитать на сервере arXiv.org).

1. Постановка вопроса.

Великий итальянский художник и ученый Леонардо да Винчи проводил опыты, которыми удивлял своих учеников: он таскал по полу, то плотно свитую веревку, то ту же веревку во всю длину.

Он смог установить, что “каждым тяжелым телом побеждается сопротивление трения весу, равное четвертой части этого веса”.

На уроке мы проверили это утверждение (данные представлены ниже). Кроме этого мы обнаружили “белое пятно” в изложении материала в учебнике. В каждом опыте стрелка динамометра “рвалась вперед” в момент начала движения, обнаруживая максимальную силу сопротивления, большую, чем сила трения скольжения. Почему так происходит? Какова природа этого “избытка”? Мы решили разобраться с этим вопросом.

2. Общие вопросы о трении.

Любое движение окружающих нас тел сопровождается сопротивлением. Даже больше – сопротивление необходимо для начала движения и изменения скорости. Например: останавливается автомобиль, у которого водитель отключил двигатель; останавливается после многих колебаний маятник; медленно погружается в банку с маслом брошенный туда маленький металлический шарик; стираются подошвы обуви и шины машин; изнашиваются детали трущихся механизмов. Все это и многое другое вызвано действием сил сопротивления.

Французский физик Гильом пишет: “Всем нам случалось выходить в гололедицу; сколько усилий стоило нам удерживаться от падения, сколько смешных движений приходилось нам проделать, чтобы устоять! Это заставляет нас признать, что обычно земля, по которой мы ходим, обладает драгоценным свойством, благодаря которому мы сохраняем равновесие без особых усилий. Та же мысль возникает у нас, когда мы едем на велосипеде по скользкой мостовой или когда лошадь скользит по асфальту и падает. Изучая подобные явления, мы приходим к открытию тех следствий, к которым приводит трение. Инженеры стремятся по возможности устранить его в машинах – и хорошо делают. В прикладной механике о трении говорится как о крайне нежелательном явлении, и это правильно, - однако лишь в узкой специальной области. Во всех прочих случаях мы должны быть благодарны трению: оно даёт нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрётся в угол, а перо выскальзывать из пальцев".

3. Трение скольжения.

Поверхность твёрдого тела обладает неровностями. Даже у хорошо отшлифованных металлов в электронный микроскоп видны “бугорки” и “впадинки”. При сжатии тел соприкосновение происходит только в самых высоких местах и площадь реального контакта значительно меньше общей площади соприкасающихся поверхностей. Давление в местах соприкосновения может быть очень большим, возникает деформация. При этом площадь контакта увеличивается, а давление падает. Так продолжается до тех пор, пока давление не достигнет определённого значения, при котором дальнейшая деформация прекращается. Поэтому площадь фактического контакта оказывается пропорциональной сжимающей силе.

В месте контакта действуют силы упругости, возникающие при деформации “бугорков”. Эти силы направлены против движения, и именно они препятствуют движению тела. К такому мнению приводит мысленный эксперимент в космическом корабле. В невесомости любое тело можно поднять лёгким движением, т.е. сил сопротивления для неподвижно лежащих предметов там нет (ВЛИЯНИЕ ЭЛЕКТРОМАГНИТНЫХ СИЛ ПРИТЯЖЕНИЯ ПРАКТИЧЕСКИ НУЛЕВОЕ). Силы сопротивления появляются, если к телу приложить некоторою силу. В результате такого действия тело и поверхность деформируются – появляются силы сопротивления (ИХ ПРИРОДА - ЭЛЕКТРОМАГНИТНАЯ СИЛА ОТТАЛКИВАНИЯ). Т.о. силы притяжения на механизме сопротивления практически не сказываются. Они влияют на целостность тела. Очевидно, что при молекулярной шлифовке, можно добиться полного соединения двух частей в единое целое. А это к трению отношения не имеет, это скорее вопрос для изучения сопротивления материалов. Аналогична ситуация с пластилином. Два кусочка при слабом соединении деформируются, но их можно снова разделить. А если нажать посильнее, то два кусочка станут единым целым. Эта модель сил сопротивления, по-видимому, близка к реальной ситуации в металлах.

Первоначально нашей задачей было определение сил трения скольжения. Для нашего эксперимента была собрана следующая установка.

1 2 3 4 5
F тяж., Н 20 25 30 35 40
F тр. ск., Н 4,5 5,5 7,0 8,5 9,5
F тяж./F тр. ск. 4,4 4,5 4,3 4,1 4,2

Наш опыт подтвердил утверждение Леонардо да Винчи, что “каждым тяжелым телом побеждается сопротивление трения весу, равное четвертой части этого веса”.

Сила трения скольжения зависит не только от свойств поверхностей и силы давления, но и от скорости движения.

4. Сила трения покоя (сила сопротивления).

Силу, которая противодействует первоначальному сдвигу предмета, называют силой трения покоя. Хотя нагляднее её называть силой сопротивления. Например, моей попытке сдвинуть гору мешает сила сопротивления. А попробуйте сказать, что сдвинуть гору вам мешает сила трения покоя? По-моему будет звучать нелепо. Ведь о газах говорят правильно – сопротивление газов. Однако оставим вопросы терминологии…

Именно сила сопротивления является необходимым условием для изменения скорости тела, т.е. для начала движения или для начала торможения. Это как необходимость воздуха для дыхания (условие необходимое, но не достаточное). В процессе движения мы толкаем Землю, а она толкает нас.

Если приложенная сила не достаточно велика, то сила сопротивления её уравновешивает. Затем сила сопротивления достигает своего максимума, и тело начинает движение, т.е.

F сопротивления макс. > F тр. скольжения.

Мы решили выяснить величину этого “избытка”: F= F сопротивления макс. - F тр. скольжения.

Предполагалось, что эта величина увеличивается пропорционально силе тяжести, как и сила трения скольжения. Результат оказался иным.

1 2 3 4 5
F тяж., Н 20 25 30 35 40
F сопр. макс., Н 6,5 8 10 12,5 17
F тр. ск., Н 4,5 5,5 7 8,5 9,5
F сопр. макс.- F тр. ск. 2,0 2,5 3,0 4,0 7,5

Почему же это происходит? Учебники, если и указывают на такую зависимость, то не объясняют её. Мы решили выяснить, как же зависит максимальная сила сопротивления от силы тяжести. Мы предполагали получить прямолинейный график, однако получилась ветвь параболы, которая при некотором значении силы тяжести резко уходит вверх. Наша версия: чем больше вес тела, тем глубже он “тонет” в поверхности стола. При малом погружении, его ещё можно выдернуть, и дальше он будет двигаться под действием меньшей силы, так как инерция не позволит ему снова “потонуть”. Тело будет скользить не проваливаясь, как движется человек на водных лыжах за катером.

При глубоком “погружении” никакая горизонтальная сила не сможет выдернуть тело. И это уже не трение, а сцепление. Аналогия с бороной помогла разобраться в этом вопросе.

Если на борону положить груз, то она полностью погрузится в землю и тащить её горизонтально , вспарывая землю на большую глубину, будет просто невозможно. И, видимо, речь будет идти уже не о трении, а о сопротивлении материалов (система борона-земля, как единое тело).

Вспомним детский конструктор.

Сцепление частей конструктора похоже на забитые гвозди и горизонтальная сила не может разрушить соединение, не ломая частей конструктора.

Пройдите босиком по влажному песку, и вы увидите, что следы – это одни часть конструктора, а наши ступни – другая. Протекторы нужны для создания механического сцепления, т.е. для увеличения силы сопротивления. Понятие “сила сопротивления” всеобъемлюще. Трение – это понятие, справедливое только для относительно гладких поверхностей и которое находится между МЕХАНИЧЕСКИМ СЦЕПЛЕНИЕМ и ЭЛЕКТРОМАГНИТНЫМИ СИЛАМИ ПРИТЯЖЕНИЯ, которые скрепляют тела. Мы же привыкли работать с крайними вариантами упрощений: пластичная и абсолютно упругая деформация, абсолютно чёрное тело и зеркальное отражение, идеальный газ. Трение – это своего рода полупроводник, занимающий среднюю нишу, но чрезвычайно важный. Какой величины должны быть бугорки и впадинки, чтобы говорить о трении, а не механическом сцеплении? Может быть, поэтому такие разные результаты получали знаменитые учёные, которые изучали трение?

5. Заключение.

Вопрос для дальнейшей работы: какую силу нужно приложить, чтобы тело можно было поднять с горизонтальной поверхности? С одной стороны будет действовать сила тяжести и электромагнитное притяжение, а с другой стороны сила, приложенная против силы тяжести. Так мы выясним, насколько значимы силы притяжения. Или ими можно пренебрегать (в конкретных задачах) и оставлять для рассмотрения только силы отталкивания, как мы отбрасываем из рассмотрения взаимодействие молекул при изучении идеального газа. Все мои разработки можно найти на школьном сайте zabalkin.narod.ru

Возникновение химической связи между атомами связано с перестройкой их внешних (валентных) оболочек и с перераспределением электронной плотности в пространстве, окружающем атомные ядра (приложение 3). При этом для образования химической связи необходимо выполнение следующих условий:

1) атомы должны так сильно сблизиться друг с другом, чтобы их электронные облака начали перекрываться;

2) атомы должны находиться друг возле друга достаточно долго для того, чтобы их внешние электронные оболочки успели перестроиться; другими словами, время взаимодействия атомов должно быть больше характерного времени образования химической связи;

3) энергия относительного движения атомных ядер должна быть меньше характерной энергии связи (в противном случае образовавшаяся связь может «разорваться»);

4) атомы должны иметь незаполненные электронные оболочки, которые содержат неспаренные электроны.

В том случае, если хотя бы одно из этих условий не выполняется, химическая связь между атомами не возникает. Однако это не означает, что атомы при этом никак не взаимодействуют друг с другом. Силы электромагнитной природы, которые действуют между атомами и молекулами, но не связаны с глубокой перестройкой их электронных орбиталей, мы будем называть нехимическими силами , илифизическим взаимодействием атомов или молекул.

1 Силы отталкивания, действующие между атомами и молекулами на малых расстояниях

Даже силами химической природы, которые начинают действовать между атомами при образовании химической связи, невозможно объяснить тот факт, что атомные ядра внутри молекулы находятся на некотором равновесном расстоянии друг от друга. Силы химической связи имеют характер притяжения, поэтому для того, чтобы ядра находились в состоянии равновесия, между ними должны действовать еще и силы отталкивания, возникающие при достаточно сильном сближении атомов.

Природа этих сил становится ясна, если вспомнить, что атомные ядра, а также окутывающие их электронные облака имеют одноименные заряды. Такие заряды, как известно, должны отталкиваться друг от друга. А в случае сближения атомов с заполненными электронными оболочками на малых расстояниях между ними возникает дополнительное отталкивание, обусловленное принципом Паули.

В силу принципа запрета Паули два электрона с одинаково направленными спинами не могут находиться в одном и том же квантовом состоянии. Однако, когда электронные облака двух атомов перекрываются, электроны одного атома имеют тенденцию занимать те состояния, которые уже заняты электронами другого атома. Поэтому заполненные электронные оболочки могут перекрываться только в том случае, если этот процесс сопровождается частичным переходом электронов в свободные квантовые состояния с более высокой энергией. Увеличение энергии сближаемых атомов как раз и говорит о том, что между ними действуют силы отталкивания.

Таким образом, возникновение сил отталкивания между атомами (а также между молекулами, которые из них состоят) обусловлено отталкиванием атомных ядер и отталкиванием электронов, которые находятся на внешних (в случае молекул) или внутренних (в случае атомов внутри молекулы) оболочках .

Рассмотрим в качестве примера отталкивание, которое возникает при сближении двух атомов водорода (в этом случае отталкивание, обусловленное действием принципа Паули, можно не учитывать).

Если атом водорода находится в основном состоянии, то точное решение уравнения Шредингера, определяющее волновую функцию атомного электрона, будет иметь вид (приложение 1):

При этом плотность распределения заряда внутри атома водорода (e >0)

Первое слагаемое в этом выражении представляет собой плотность заряда ядра. Считая ядро точечным, легко сделать вывод, что эта плотность равна нулю везде, кроме той точки, в которой расположено ядро. В самой этой точке плотность заряда ядра +e /V e ®¥, так как объем точечного ядраV e стремится к нулю. Таким образом, плотность заряда ядра действительно можно представить в виде +e d (r ), гдеd (r ) – так называемая дельта-функция Дирака:

Второе слагаемое в выражении (3.3) представляет собой плотность заряда электрона, «размазанного» вокруг атомного ядра с «плотностью» (3.2).

Плотность распределения заряда (3.3) внутри атома водорода позволяет рассчитать потенциал его электрического поля.

Для этого следует решить уравнение Пуассона

Точное решение этого уравнения, которое обращается в ноль при r ®¥и переходит в потенциал точечного ядра приr ®0, определяется выражением:

Поэтому взаимодействием между двумя атомами водорода, которые находятся на расстоянии R >> 2a 0 можно пренебречь (рис.3.1, а).

В области r <a 0 потенциал поля атома водорода представляет собой потенциал электрического поля атомного ядра, экранированного полем электрона:

.

Поэтому при сближении двух атомов водорода до расстояний a 0 < R < 2a 0 , при которых начинают перекрываться волновые функции их валентных электронов (рис.3.1, б), возникает ситуация, благоприятная для образования химической связи (атомные электроны начинают притягиваться к ядрам соседних атомов). Однако при дальнейшем сближении атомов (приR < a 0) в поле (3.8) ядра одного атома попадает ядро другого атома (рис.3.1, в). Поэтому между ядрами начинают действовать силы отталкивания. При этом энергия этого отталкивания

.

а )

б )

в )

Рис. 3.1. Взаимодействие атомов водорода: а ) при R >> 2a 0 атомы практически не взаимодействуют друг с другом; энергия их взаимодействия
;

б ) при a 0 < R < 2a 0 атомы притягиваются друг к другу за счет притяжения атомных электронов к ядрам соседних атомов;
, возникает ситуация, благоприятная для образования химической связи;

в ) при R < a 0 атомы отталкиваются друг от друга за счет электростатического отталкивания атомных ядер;
.

Энергию электростатического взаимодействия двух атомов водорода в диапазоне всех возможных значений межъядерного расстояния R можно рассчитать, зная распределение (3.6) потенциала электрического поля, создаваемого одним атомом, и распределение (3.3) плотности заряда в другом атоме:

.

Однако аналитически интегрирование (3.10) может быть выполнено только в случае атомов водорода (при этом следует помнить, что рассматриваемая теория не учитывает принципа Паули, т.е. наличия у электронов спина). При расчете энергии взаимодействия многоэлектронных атомов для этого приходится использовать численные методы интегрирования.

В случае многоэлектронных атомов ситуация еще более усугубляется тем, что для таких атомов, как известно, не существует точного решения уравнения Шредингера. Поэтому различного рода приближенные или численные методы приходится использовать уже для расчета атомных потенциалов.

Среди приближенных методов вычисления атомных потенциалов наибольшее распространение получили метод самосогласованного поля Хартри-Фока и статистический метод Томаса-Ферми (приложение 2).

В методе Хартри-Фока волновая функция многоэлектронного атома, которая позволяет, как мы видели, рассчитать потенциал его электрического поля, представляется как суперпозиция волновых функций отдельных электронов. При этом предполагается, что каждый электрон движется в некотором эффективном (самосогласованном) поле, создаваемом атомным ядром и остальными электронами. Уравнение Шредингера для такой системы решается численно, методом последовательных приближений.

Подобная задача вполне под силу современным вычислительным машинам. Тем не менее метод последовательных приближений требует больших затрат машинного времени и может привести к большим численным ошибкам, которые накапливаются в процессе вычислений. Поэтому на практике метод Хартри-Фока обычно используется для описания состояния атомов, содержащих небольшое число электронов. Для описания сложных атомов с большим зарядовым числом Z обычно применяется статистический метод Томаса-Ферми.

В модели Томаса-Ферми не учитывается оболочечная структура атомов. Атом представляется в виде неподвижного положительно заряженного атомного ядра, вокруг которого случайным образом, но в соответствии с принципом Паули располагаются атомные электроны. Плотность такого электронного облака неоднородна: она определяется распределением потенциала электрического поля в атоме. В свою очередь, это распределение поля определяется распределением электронов в окружающем ядро пространстве.

Использование статистических методов дает возможность выразить плотность распределения заряда внутри атома Томаса-Ферми через распределение потенциала электрического поля. А решение уравнения Пуассона (3.4) позволяет представить потенциал электрического поля многоэлектронного атома в виде:

(Отметим аналогию между выражением (3.11) и (3.8). В формуле (3.8) Z = 1,
, а
.)

Функция экранирования c (x ) в модели Томаса-Ферми рассчитывается численными методами. Однако она оказывается универсальной, не зависящей от сорта атомов функцией и допускает аналитическую аппроксимацию.

В качестве примера можно привести аппроксимацию, предложенную Мольер:

Функцию экранирования Томаса-Ферми, записанную в виде (3.13), часто называют функцией экранирования Мольер, функцию экранирования в форме (3.14) – функцией экранирования Линдхарда. Разлагая последнее выражение в области малых x в ряд, легко показать, что оно с хорошей точностью аппроксимирует выражение
, которое в модели Томаса-Ферми является точным приx ®0.

Вычисление энергии отталкивания атомов и в модели Хартри-Фока, и в модели Томаса-Ферми сводится к численному интегрированию выражения (3.10). Фирсов, однако, показал, что теория хорошо описывает экспериментальные данные, если в качестве выражения для потенциальной энергии отталкивания использовать функцию вида

,

которая аналогична функции (3.9) и имеет смысл энергии кулоновского отталкивания атомных ядер с зарядами +Z 1 e и +Z 2 e , экранированных атомными электронами.

Функция c (x ), которая входит в формулу (3.15), имеет тот же смысл (и вид), что и в выражении (3.11). Однако благодаря дополнительному экранированию ядра второго атома электронами его внутренних оболочек энергия отталкивания атомов (3.15) уменьшается с увеличением расстояния быстрее, чем электрическое поле (3.11), создаваемое первым атомом. Поэтому длина экранированияa F в выражении (3.15), оказывается меньше длины экранированияa TF (3.12):

Такое приближение в описании взаимодействия атомов на малых расстояниях называется моделью жестких шаров .

Воронов В. Гравитационное «отталкивание» // Квант. - 2009.- № 3. - С. 37-40

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Закон всемирного тяготения относится к числу фундаментальных физических законов. Казалось бы, нет основания сомневаться в справедливости его основного тезиса о взаимном притяжении тел в природе. Однако существуют ситуации, в которых всемирное тяготение приводит к совершенно неожиданным эффектам. Вот об этих необычных случаях и хотелось бы поговорить.

Вообразим бесконечную вселенную, заполненную водой. Как будут взаимодействовать друг с другом различные тела в этой вселенной? Вроде бы, ответ очевиден: они будут притягиваться, подчиняясь закону всемирного тяготения. Но... не стоит торопиться с выводами. Давайте разберем несколько частных случаев.

Для начала исследуем взаимодействие двух свинцовых дробинок. Сразу стоит оговориться, что термин «взаимодействие» здесь не очень подходит, так как на дробинки действуют не только силы взаимного гравитационного притяжения, но и гравитация вселенной, и силы упругости водной среды. В первую очередь, постараемся учесть все силы, имеющие гравитационную природу.

Учет гравитационного взаимодействия. Рассмотрим силы, действующие на дробинку 1 (рис.1). Проведем через ее центр плоскость, перпендикулярную линии, соединяющей обе дробинки. Она разделит вселенную на две полувселенные. Для удобства назовем их левой и правой. Эти две полувселенные симметричны относительно разделяющей их плоскости, но в правой есть дополнительная дробинка 2. Симметричные части полувселенных действуют на дробинку 1 с совершенно равными силами притяжения. Результирующая сила является итогом действия двух различающихся сферических элементов. В правой части это дробинка, а в левой - вода в объеме дробинки. Так как масса дробинки больше массы соответствующего элемента воды, то полная сила \(\vec F_1 ,\) действующая на дробинку 1 , будет направлена вправо, но окажется меньше силы гравитационного притяжения к дробинке 2. Рассчитаем эту силу:

\(~F_1 = F_{dr}-F_{vodi} = G\frac{ m_{dr} m_{dr} }{r^2} - G\frac{ m_{dr} m_{vodi} }{r^2} = G\frac{ m_{dr} }{r^2} (m_{dr} m_{vodi}) = G\frac{ m_{dr}^2 }{r^2} \left(1 - \frac{ \rho_{vodi} }{\rho_{dr}} \right),\)

где r - расстояние между дробинками.

Легко показать, что эта формула в случае разных по массе дробинок преобразуется к виду

\(~F_1 = G\frac{m_1m_2}{r^2}\left(1 - \frac{ \rho_{vodi} }{ \rho_{dr} } \right),\)

а в случае взаимодействия частиц любого вещества в любой бесконечной среде принимает вид

\(~F_1 = G\frac{m_1m_2}{r^2}\left(1 - \frac{ \rho_{sredy} }{ \rho_{veschestva} } \right),\)

Выражение, стоящее до скобок, полностью совпадает с законом всемирного тяготения, и если плотность среды положить равной нулю, то мы получаем стандартную формулировку закона. (Что и должно произойти, поскольку в этом случае формула описывает гравитационное взаимодействие тел в вакууме.)

Если плотность среды постепенно увеличивать, то сила взаимного притяжения будет уменьшаться, пока не обратится в ноль при равенстве плотностей среды и вещества. Если же плотность среды будет больше плотности помещенных в нее элементов вещества, то сила станет отрицательной, что соответствует отталкиванию этих элементов. Так, два деревянных шарика в водной вселенной будут отталкиваться с силой

\(~F_1 = G\frac{m_1m_2}{r^2} \left| 1 - \frac{ \rho_{vodi} }{ \rho_{dereva} } \right| ,\)

Таким образом, тяготение способно породить отталкивание!

Этот эффект взаимного отталкивания можно пояснить, вводя в рассмотрение «поля», порождаемые внесением в бесконечную однородную среду элементов вещества с иной плотностью. Появление более плотного вещества приводит к созданию «поля» тяготения. Причем тяготение создается только за счет «избыточной» плотности в объеме вещества. Если же плотность вещества меньше плотности среды, то возникает «поле» отталкивания. Особенность этих «полей» в том, что они проявляют свои свойства вне зависимости от того, на какое вещество (с плотностью большей или меньшей плотности среды) они действуют. Напряженность такого «поля» можно рассчитать по формуле (речь идет о центральном поле)

\(~E = G\frac{m_{veschestva}}{r^2} \left| 1 - \frac{ \rho_{sredy} }{ \rho_{veschestva} } \right|.\)

Теперь попробуем исследовать более сложный случай. До сих пор мы рассматривали элементы вещества, имеющие одну и ту же плотность. А как будут взаимодействовать тела с различными плотностями? Для определенности выберем деревянный шарик и свинцовую дробинку и воспользуемся понятиями «полей» отталкивания и тяготения. Дробинка, имея избыточную плотность, создает «поле» тяготения и поэтому будет притягивать деревянный шарик (рис.2). А этот шарик, обладая недостаточной плотностью, создает «поле» отталкивания и потому будет отталкивать свинцовую дробинку. Таким образом, силы, действующие на дробинку и шарик, будут направлены в одну сторону. Можно показать, что в этом случае модуль каждой силы, при соответствующей замене индексов 1 (для дробинки) и 2 (для шарика), рассчитывается по формуле

\(~F_{12} = G\frac{m_1m_2}{r^2} \left| 1 - \frac{ \rho_{sredy} }{ \rho_{veschestva} } \right|.\)

Но нарушение третьего закона Ньютона (силы не только не направлены навстречу друг другу, но, в общем случае, и не равны по модулю), как и закона всемирного тяготения, только кажущееся. Дело в том, что силы, описываемые последней формулой, не являются силами взаимодействия. Наряду с гравитационным взаимодействием тел эта формула учитывает гравитационное влияние вселенной, порожденное ее асимметрией по отношению к каждому из тел. И различие в силах «взаимодействия» порождается именно различным влиянием вселенной на находящиеся в ней элементы.

Подводя промежуточный итог, можно заметить, что учет всех сил, имеющих гравитационную природу, показывает, что закон всемирного тяготения вызывает не только притяжение тел. Но необходимо помнить, что мы пока не принимали во внимание наличие сил упругости водной среды. Этим и займемся.

Учет архимедовой силы. Кажется вполне очевидным, что в однородной водной вселенной давление во всех точках одинаково. Архимедова сила возникает только тогда, когда появляется неоднородное включение. Рассчитаем эту силу для случая, когда она вызывается появлением свинцовой дробинки.

Рассмотрим произвольно выбранный элемент воды (рис.3). Он находится в состоянии покоя, а значит, сила, действующая со стороны «поля» тяготения дробинки, полностью компенсируется архимедовой силой. Найдем эту силу:

\(~F_A = F_{pr} = m_{el-ta"vodi}E_{polya} = \rho_{vodi}V_{el-ta"vodi}E_{polya}.\)

Очевидно, что эта формула, так напоминающая классический школьный вариант \(~F_A = \rho V g ,\) может использоваться и для «поля» отталкивания (в этом случае она также будет направлена против «поля»).

А теперь можно попробовать учесть все силы. Вернемся к случаю двух свинцовых дробинок. Полная сила \(\vec F_1 ,\) действующая на первую дробинку, равна векторной сумме силы, вызванной «полем» второй дробинки, и архимедовой силы (рис.4):

\(~F_1 = F_{polya2} - F_A = m_1 E_{polya2} - \rho_{vody} V_1 E_{polya2} = \left(1 - \frac{ \rho_{vody} }{ \rho_{dr} } \right) m_1 E_{polya2} = \left(1 - \frac{ \rho_{vody} }{ \rho_{dr} } \right) m_1 G \frac{m_2}{r^2} \left(1 - \frac{ \rho_{vody} }{ \rho_{dr} } \right) = G \frac{m_1m_2}{r^2} \left(1 - \frac{ \rho_{vody} }{ \rho_{dr} } \right)^2.\)

Полная симметрия этой формулы относительно индексов показывает, что полная сила, действующая на вторую дробинку, будет по величине такой же\[~F_2 = F_1.\] Наличие квадрата выражения в скобках в этой формуле тоже не случайно. Если плотность среды оказывается больше плотности вещества, то знак силы не меняется. А значит, два деревянных шарика в водной вселенной тоже будут притягиваться. И тогда последнюю формулу можно переписать в более общем виде:

\(~~F = G\frac{m_1m_2}{r^2} \left(1 - \frac{ \rho_{sredy} }{ \rho_{veschestva} } \right)^2.\)

Однако и эту формулу нельзя использовать для расчета сил, действующих на тела с различными плотностями. Вернемся к ситуации с деревянным шариком и свинцовой дробинкой. Найдем силу, действующую на свинцовую дробинку. Деревянный шарик создает силу отталкивания, но в противоположную сторону действует архимедова сила (рис.5). Полную силу \(\vec F_{dr}\) найдем как векторную сумму соответствующих сил:

\(~F_{dr}=F_A - F_{ottalk} = \rho_{vodi}V_{dr}E_{ottalk} - m_{dr}E_{ottalk} = \left(\frac{ \rho_{vodi} }{ \rho_{dr} } -1 \right)m_{dr}E_{ottalk} = \left(\frac{ \rho_{vodi} }{ \rho_{dr} }-1 \right)m_{dr}G \frac{m_{dereva}}{r^2}\left(1 - \frac{ \rho_{vodi} }{ \rho_{dereva} } \right) = G\frac{m_{dereva}m_{dr}}{r^2}\left(\frac{ \rho_{vodi} }{ \rho_{dr} } -1 \right) \left(1 - \frac{ \rho_{vodi} }{ \rho_{dereva} } \right).\)

Мы видим, что \(~F_{dr} < 0\) , а значит, сила отталкивания больше архимедовой силы. Таким образом, деревянный шарик и свинцовая дробинка будут отталкиваться друг от друга. Можно показать, что такая же по модулю, но противоположно направленная сила будет действовать и на деревянный шарик.

Итак, общая формула, описывающая «взаимодействие» двух тел в бесконечной жидкой среде, имеет следующий вид:

\(~F = G\frac{m_1m_2}{r^2}\left(\frac{ \rho_{vesch1} - \rho_{sredy} }{ \rho_{vesch1} } \right) \left(\frac{ \rho_{vesch2} - \rho_{sredy} }{ \rho_{vesch2} } \right).\)

Очевидно, что в частном случае, когда плотности тел одинаковы, вне зависимости от их соотношения с плотностью среды эти тела будут притягиваться друг к другу \(~(F > 0).\) Притяжение будет наблюдаться и в том случае, когда плотности не равны, но обе либо больше, либо меньше плотности среды. Тогда выражения в скобках в последней формуле будут одного знака, и сила будет положительной. Отталкивание тел возможно лишь тогда, когда плотность одного тела больше плотности среды, а плотность другого - меньше. В этом случае сила меняет знак на отрицательный, что говорит об отталкивании тел. Если же плотность одного из тел совпадает с плотностью среды, то сила обращается в ноль.