Эффект казимира и его приложения. Эффект Казимира: шаг навстречу космическим путешествиям

Наблюдение эффекта Казимира. Нулевые колебания квантовых полей

Эффект Казимира также, как лэмбовский сдвиг, является проявлением наличия квантовополевого электромагнитного вакуума, заполненного флуктуациями электромагнитного поля. В случае лэмбовского сдвига этот вакуум искажался кулоновским полем ядра, что перераспределяло энергии флуктуаций в зависимости от расстояния до ядра (так называемая поляризация вакуума). Неоднородная поляризация вакуума, в свою очередь, приводила к зависимости величины лэмбовского сдвига энергии электрона от его расстояния до ядра. Самые близкие к ядру ‑электроны имели наибольший сдвиг из-за взаимодействия с флуктуациями.

В случае эффекта Казимира неоднородность флуктуаций создается проводником (или даже диэлектриком), помещенным в вакуум . Мы будем рассматривать классический пример эффекта Казимира - взаимодействие двух бесконечных параллельных идеально проводящих пластин в вакууме. Из-за идеальной проводимости этих пластин электрическое поле внутри них должно отсутствовать, а на их поверхности должно иметь только нормальную составляющую. Эти граничные условия для электрического поля физически обусловлены взаимодействием с электронами проводимости внутри пластин и имеют место как для классического электрического поля, так и для поля вакуумных флуктуаций - как говорят, поля нулевых колебаний . В результате эти нулевые колебания перераспределяются в пространстве между пластинами, а также в пространстве за пластинами . Электромагнитное поле, как и все материальные поля и частицы, имеет энергию, поэтому флуктуации этого поля также обладают энергией. Оказывается, что энергия перераспределенных в пространстве нулевых колебаний электромагнитного поля зависит от расстояния между пластинами ! Другими словами, если мы изменяем расстояние между пластинами, мы изменяем и энергию нулевых колебаний поля между ними и с внешних сторон от пластин. Получается, что при изменении расстояния между пластинами на мы совершаем дополнительную работу на изменение энергии флуктуаций (ведь энергия этих флуктуаций не есть «энергия из ничего», как нередко утверждается!). Чтобы совершить такую работу, мы должны приложить к пластинам силу , такую, что . Отсюда следует очевидный вывод: раз для перемещения пластин мы должны прикладывать к ним дополнительную силу , то на пластины действует сила Казимира , равная

против действия которой нам и приходится работать.

В случае электромагнитного поля эту силу нетрудно вычислить, и она оказывается равной

где - площадь пластин. Знак минус соответствует притяжению пластин. Таким образом, вакуум между пластинами обладает отрицательным давлением (натяжением) , которое и притягивает пластины друг к другу.

Эффект Казимира был предсказан в 1948 году голландским физиком Хендриком Бругтом Герхардом Казимиром (1909–2000) и датчанином Дирком Полдером (1919–2001) на основе другой, эквивалентной модели - а именно, на основе аналогий с силами Ван дер Ваальса. Эти силы дальнодействующего притяжения между атомами приводят к известному даже из школьной программы уравнению Ван дер Ваальса для реального газа и убывают с расстоянием как . Окончательная теория этих сил была создана только в XX веке на основе квантовой механики. Согласно этой теории электронная оболочка атома может виртуально сдвинуться, так, что ее центр окажется на ненулевом расстоянии от ядра. В этом случае центры положительного и отрицательного зарядов в атоме уже не будут совпадать, т.е. у него появится ненулевой дипольный момент . Этот виртуальный дипольный момент создаст виртуальное электрическое поле в пространстве вокруг себя, которое, в свою очередь, будет вызывать такую же дипольную поляризацию других атомов - и, как результат, взаимодействие между ними. В классической физике для реализации данного механизма необходим источник энергии, который будет иногда переводить атомы в неравновесное, поляризованное состояние. Например, таким источником может служить тепловое движение атомов. Тем не менее, опыты показывают, что силы Ван дер Ваальса практически не зависят от температуры - стало быть, этот источник флуктуаций имеет другую природу. Оказалось, что флуктуации имеют квантовую природу и проявляются в считавшемся классическим вандерваальсовском взаимодействии.

Казимир предположил, что точно такой же процесс может иметь место в случае параллельных пластин. Действительно, уединенная пластина остается нейтральной, поскольку перераспределение зарядов на ней создаст электрическое поле, стремящееся снова вернуть ее в равновесное состояние полной электронейтральности. Однако при наличии второй пластины поляризация первой встретит на ней отклик в виде притяжения - и эти отклики, сложенные для всех возможных состояний виртуальной поляризации первой пластины, и должны дать силу их притяжения. Качественно показать это можно с использованием метода отражений. Действительно, пусть на первой пластине возникло элементарное дипольное возбуждение в виде двух равных по модулю и противоположных по величине зарядов (см. рис. выше). Пусть -дипольный момент образовавшейся конфигурации. Тогда сила взаимодействия этого диполя со второй пластиной рассчитывается, если отразить каждый из зарядов относительно последней, изменив при этом их знак. В результате мы получаем дипольный момент , расположенный на расстоянии от первого. Сила взаимодействия этих диполей легко считается, и ее нормальная к пластинам компонента оказывается равной

где знак минус выбран, чтобы подчеркнуть притяжение ко второй пластине.

Между прочим, аналог эффекта Казимира известен в мореплавании: если два судна подойдут достаточно близко борт к борту, то между ними море начинает волноваться слабее, и давление волн с внешних сторон кораблей начинает прибивать их друг к другу. Квантовый эффект Казимира вносит существенный вклад в эффекты, происходящие в малом объеме, в частности, он должен учитываться при расчете энергии ядер. Эффект Казимира также оказывает влияние на физику коллоидных растворов. Эффект Казимира интересен и с точки зрения моделей с гравитацией, поскольку вакуум между пластинами обладает локально отрицательной плотностью энергии флуктуаций, а значит, может, по идее, создавать антигравитационный эффект. По этой причине казимировский вакуум относят к так называемой экзотической материи . Такая материя необходима, например, для стабилизации кротовых нор (тоннелей в пространстве-времени), поэтому в теории таких образований эффект Казимира занимает важное место. В казимировском вакууме также предсказывается сверхсветовое распространение электромагнитных волн (так называемый эффект Шарнхорста). Однако этот эффект очень мал и поэтому пока не наблюдался в эксперименте.

Первые экспериментальные оценки по эффекту Казимира, обладавшие точностью порядка , были получены через 10 лет после появления его гипотезы. В частности, первый эксперимент с параллельными пластинами поставил в 1958 году Маркус Спаарней. Он использовал конденсатор, составленный из двух параллельных пластин, верхняя из которых была подвешена на пружине. При подведении к конденсатору напряжения на его пластинах наводится заряд , и пружина растягивается, пока сила Казимира, сила электростатического притяжения, сила тяжести и сила ньютоновского притяжения между пластинками (да, ее тоже надо учитывать!) не уравновесят силу упругости со стороны растянутой пружины. Соответствующее уравнение для точки равновесия имеет вид.

  • 1958 - непрямой эксперимент: Спарнаай использовал параллельные пластины, чтобы получить наглядные проявления эффекта Казимира, но с множеством экспериментальных ошибок;
  • 1972 - непрямой эксперимент: Сабиски и Андерсон измерили толщину гелиевых пленок, косвенно подтвердив эффект Казимира;
  • 1978 - непрямой эксперимент: фон Блэк и Овербеек наблюдали силу качественно;
  • 1997 - прямой эксперимент: Ламоро, Мохидин и Рой качественно измерили силу в пределах 15% от величины, предсказанной теорией;
  • 2001 - прямой эксперимент: ученые из Университета Пади использовали микрорезонаторы, чтобы обнаружить этот эффект между параллельными пластинами.

За многие годы стало очевидно, что использование двух параллельных пластин для обнаружения этой силы требует невероятной точности, когда дело доходит до выравнивания. Одна из пластин была замещена сферической пластиной с очень большим радиусом.

Динамический эффект Казимира потребовал больше времени для проверки. Он был предсказан в 1970-х годах и экспериментально подтвержден в мае 2011 года учеными из Технологического университета Чалмерса в Гетеборге, Швеция. Ученые генерировали микроволновые фотоны в вакууме сверхпроводящего микроволнового резонатора. Для достижения эффекта движущейся пластины ученые использовали модифицированный SQUID (сверхпроводящее устройство квантовой интерференции), чтобы регулировать дистанцию между пластинами. Результаты до сих пор находятся на рассмотрении научной экспертизы, но если они подтвердятся, это будет первое экспериментальное подтверждение динамического эффекта Казимира.

От нанометров к космическим путешествиям

Как же от силы, сдвигающей нанопластинки, перейти к космическим путешествиям на околосветовых скоростях? Динамический эффект Казимира можно использовать, чтобы создать двигатель для космического корабля, получая энергию прямо из вакуума. Хотя эта идея весьма амбициозная, один молодой египтянин уже ее запатентовал.

Другая теория, которая вытекает из эффекта Казимира, заключается в том, что червоточину вследствие нехватки массы между двумя пластинами. В теории это может привести к путешествиям быстрее света, хотя это спекулятивно и вообще теория.

К счастью, проводятся новые эксперименты, технологии улучшаются, и вполне может так статься, что использование эффекта Казимира на практике не за горами. В частности, он может пригодиться в нанотехнологиях - в кремниевой схемотехнике и осцилляторах Казимира.

Сила Казимира Термин сила Казимира Термин на английском Casimir forces Синонимы эффект Казимира Аббревиатуры Связанные термины Определение сила, обусловленная наличием граничных условий вторичного квантования нулевых колебаний электромагнитного поля в вакууме. В частном случае двух незаряженных проводящих параллельных пластин является силой притяжения их друг к другу.
Описание

По макроскопическим меркам сила Казимира ничтожно мала. Однако, для объектов размером в несколько нанометров и обладающих, соответственно, крайне малой массой, сила Казимира становится весьма заметной и ее приходится учитывать при проектировании наноэлектромеханических устройств (НЭМС).

В рамках оригинальных расчетов, проведенных голландскими учеными Хендриком Казимиром и Дирком Полдером в 1948 г. (), предполагалось наличие двух незаряженных идеально проводящих металлических пластин, находящихся на расстоянии a друг от друга. В этом случае силу F , отнесенную к единице площади А , можно рассчитать как:

Наличие постоянной Планка (? = 1,05*10 -34 Дж*с) в числителе этой дроби и обуславливает её чрезвычайную малость.

Чтобы пояснить физический смысл этой силы, следует вспомнить, что, в соответствии с постулатами квантовой механики устойчивые значения энергии частицы определяются стационарным уравнением Шредингера:

В случае, если частица находится в произвольном потенциальном поле и способна совершать свободные колебания (осцилляции), а потенциал возвращающей силы описывается степенной функцией с четным показателем (т.е. параболой), решение уравнения дает следующие собственные значения энергии E :

где ? - собственная частота колебаний осциллятора, а ?? - квант, равный разности энергий уровней с числами квантов n и n-1 . Это выражение называют решением уравнения Шредингера для гармонического осциллятора. Из этого решения видно, что даже если число квантов энергии в осциллаторе n =0, энергия гармонического осциллятора равна не нулю, а ??/2 . Величину ??/2 назвали нулевыми колебаниями гармонического осциллятора.

Если распространить данную логику на кванты электромагнитного излучения - фотоны (и использовать подход вторичного квантования , в котором используются операторы рождения и уничтожения фотонов), то в некотором приближении возникновение силы Казимира можно объяснить так: в отсутствие каких-либо объектов все пространство физического вакуума заполнено бесконечным числом гармоник нулевых колебаний электромагнитного поля (даже в отсутствие фотонов, как было показано выше, энергия вакуума не будет равна нулю) с, соответственно, бесконечным набором длин волн.

Наличие двух проводящих пластин ограничивает пространство таким образом, что на их поверхности поперечная компонента электрического поля и нормальная компонента магнитного поля становятся равными нулю. То есть, между пластинами возникает стоячая волна с длиной волны 2a/ k, где k - номер гармоники (1, 2, 3 и т.д.). В то же время, снаружи пластин пространство физического вакуума осталось невозмущенным, и оно-то и оказывает давление на пластины, стремясь приблизить их друг к другу.

Первые эксперименты по обнаружению силы Казимира были поставлены уже в 1958 г. (), однако, их точность была очень низкой. Более точно силу Казимира удалось измерить в Стиву Ламоро в 1997 г. ().

  • Лурье Сергей Леонидович, к.ф.-м.н.
Ссылки
  1. Casimir H. B. G., and Polder D. The Influence of Retardation on the London-van der Waals Forces//Physical Review - 1948. vol. 73 (4). - pp. 360–372
  2. Sparnaay M.J. Measurement of attractive forces between flat plates//Physica - 1958. vol. 24 (6-10) - pp. 751 - 764
  3. Lamoreaux S. K. Demonstration of the Casimir Force in the 0.6 to 6 µm Range//Phys. Rev. Lett. - 1997. vol. 78 (1) - pp. 5–8
Иллюстрации Теги Разделы

Энциклопедический словарь нанотехнологий. - Роснано . 2010 .

Смотреть что такое "сила Казимира" в других словарях:

    Эффект Казимира эффект, заключающийся во взаимном притяжении проводящих незаряженных тел под действием квантовых флуктуаций в вакууме. Чаще всего речь идёт о двух параллельных незаряженных зеркальных поверхностях, размещённых на близком… … Википедия

    Силы Казимира

    Совокупность физ. явлений, обусловленных специфической поляризацией вакуума квантованных полей вследствие изменения спектра нулевых колебаний в областях с границами и в пространствах с нетривиальной топологией. Предсказан X. Казимиром в 1948 … Физическая энциклопедия

    Пожалуйста, актуализируйте данные В этой статье данные предоставлены преимущественно за 2007 2008 гг … Википедия

    Casimir Forces - Casimir Forces Силы Казимира Сила притяжения, действующая между двумя параллельными идеальными зеркальными поверхностями, находящимися в абсолютном вакууме. Сила Казимира чрезвычайно мала. Расстояние, на котором она начинает быть сколько… … Толковый англо-русский словарь по нанотехнологии. - М.

    Фоковское состояние это квантовомеханическое состояние с точно определённым количеством частиц. Названо в честь советского физика В. А. Фока. Содержание 1 Свойства фоковских состояний 2 Энергия состояний … Википедия

    Великий князь всея Руси, называемый также иногда Великим, старший сын великого князя Василия Васильевича Темного и супруги его, великой княгини Марии Ярославны, внучки кн. Владимира Андреевича Храброго, род. 22 января 1440 г., в день памяти… … Большая биографическая энциклопедия

    В этой статье векторы выделены жирным шрифтом, а их абсолютные величины курсивом, например, . В классической механике вектором Лапласа Рунге Ленца называется вектор, в основном используемый для описания формы и ориентации орбиты, по… … Википедия

    В этой статье векторы и их абсолютные величины выделены жирным шрифтом и курсивом, например, . В классической механике вектором Лапласа Рунге Ленца называется вектор, в основном используемый для описания формы и ориентации орбиты, по которой… … Википедия

В 1948 году голландские физики-теоретики Хендрик Казимир и Дирк Полдер в поисках объяснения свойств коллоидных пленок рассмотрели взаимодействие молекул, поляризующих друг друга электромагнитными силами. Оказалось, что сила притяжения поляризуемой молекулы к металлической пластинке обратно пропорциональна четвертой степени расстояния между ними.

Но этим дело не закончилось. Казимир обсуждал свои выводы с Нильсом Бором, и тот заметил, что притяжение можно объяснить и совершенно иначе. Тогда уже было доказано, что виртуальные частицы физического вакуума влияют на энергетические уровни внутриатомных электронов (лэмбовский сдвиг). По мнению Бора, вычисленный Казимиром эффект мог иметь точно такую же природу. Казимир произвел соответствующие расчеты и получил ту же самую формулу.

Эффект Казимира

В том же году Казимир предложил простой и наглядный пример силового воздействия вакуума. Представим себе две плоские проводящие пластины, расположенные параллельно. Плотность виртуальных фотонов между ними будет меньшей, нежели снаружи, поскольку там смогут возбуждаться лишь стоячие электромагнитные волны строго определенных резонансных частот. В результате в пространстве между пластинами давление фотонного газа окажется меньше давления извне, из-за чего они будут притягиваться друг к другу, причем опять-таки с силой, обратно пропорциональной четвертой степени ширины щели (при сближении пластин набор допустимых частот стоячих волн сокращается, так что различие плотности «внутренних» и «внешних» фотонов возрастает). Реально такое притяжение становится заметным на расстоянии нескольких микрометров. Это явление и получило название эффекта Казимира.

Движущиеся зеркала

В 1970 году физик из американского Университета Брандейса Джеральд Мур опубликовал статью, где теоретически рассмотрел поведение вакуума в полости, ограниченной двумя сближающимися или расходящимися плоскопараллельными зеркалами. Он показал, что такие зеркала могут усилить вакуумные флуктуации… и заставить их породить реальные фотоны. Однако, согласно расчетам Мура, для генерации фотонов в сколь-нибудь заметных количествах зеркала должны иметь релятивистскую скорость. В конце 1980-х проблема «раскачки» вакуумных флуктуаций заинтересовала многих ученых. Ее теоретический анализ показал, что вакуум способен рождать реальные фотоны не только около материальных тел, обладающих субсветовой скоростью, но и вблизи материалов, быстро изменяющих свои электрические или магнитные свойства. Такое превращение виртуальных вакуумных флуктуаций в реальные кванты назвали динамическим, или нестационарным, эффектом Казимира.

До недавнего времени эти исследования ограничивались чистой теорией. Прямое воспроизведение схемы Мура, разумеется, не под силу современным технологиям, которые не умеют разгонять зеркала из любых материалов до субсветовых скоростей. В научной литературе неоднократно обсуждались более практичные устройства для наблюдения динамического эффекта Казимира — например, пьезоэлектрические вибраторы и высокочастотные электромагнитные резонаторы. В последние годы физики, работающие в этой области, утвердились во мнении, что эти эксперименты вполне осуществимы.

Проверка на практике

Первыми успеха добились Кристофер Уилсон и его коллеги по Технологическому университету Чалмерса в шведском городе Гетеборге вместе с коллегами из Австралии и Японии. «Овеществление» виртуальных фотонов происходило около волновода из алюминия, подключенного к сверхпроводящему квантовому интерферометру (два джозефсоновских туннельных перехода, параллельно соединенных в замкнутый контур). Экспериментаторы изменяли индуктивность этого контура, пропуская через него магнитный поток, осциллирующий с частотой порядка 11 ГГц. Колебания индуктивности сказывались на электрической длине волновода, которая осциллировала с вполне релятивистской скоростью (около четверти скорости распространения электромагнитных волн в волноводе, которая примерно равнялась 40% скорости света в вакууме). Волновод, как и ожидалось, излучал фотоны, извлеченные из вакуумных флуктуаций. Спектр этого излучения соответствовал теоретическим предсказаниям.

Однако использовать эту установку для получения энергии из вакуума невозможно: энергия полученного излучения неизмеримо слабее мощности, которую приходится закачивать в прибор. Это же справедливо и для прочих устройств, которыми можно воспользоваться для наблюдения динамического эффекта Казимира. В общем, вакуум — это вовсе не нефтеносный слой.

А позднее подтверждён экспериментально.

Суть эффекта

Аналогия

Явление, схожее с эффектом Казимира, наблюдалось ещё в XVIII веке французскими моряками. Когда два корабля , раскачивающихся из стороны в сторону в условиях сильного волнения , но слабого ветра , оказывались на расстоянии менее приблизительно 40 метров, то в результате интерференции волн в пространстве между кораблями прекращалось волнение. Спокойное море между кораблями создавало меньшее давление, чем волнующееся с внешних бортов кораблей. В результате возникала сила, стремящаяся столкнуть корабли бортами. В качестве контрмеры, руководство по мореплаванию начала 1800-х годов рекомендовало обоим кораблям послать по шлюпке с 10-20 моряками, чтобы расталкивать корабли.

Современные исследования эффекта Казимира

  • эффект Казимира для диэлектриков
  • эффект Казимира при ненулевой температуре
  • связь эффекта Казимира и иных эффектов или разделов физики (связь с геометрической оптикой , декогеренцией , полимерной физикой)
  • динамический эффект Казимира
  • учёт эффекта Казимира при разработке высокочувствительных МЭМС -устройств.

Эффект Казимира в литературе

Довольно подробно эффект Казимира описывается в научно-фантастической книге Артура Кларка «Свет иных дней », где он используется для создания двух парных червоточин в пространстве-времени, и передаче через них информации.

Напишите отзыв о статье "Эффект Казимира"

Литература

  • Мостепаненко В. М., Трунов Н. Н. . УФН , 1988, т. 156, вып. 3, с. 385-426.
  • Гриб А. А., Мамаев С. Г., Мостепаненко В. М. . Вакуумные квантовые эффекты в сильных полях. - М.: Энергоатомиздат, 1988.

Примечания

Ссылки

Отрывок, характеризующий Эффект Казимира

– Нет.
– Знаменитого Дюпора, танцовщика не видал? Ну так ты не поймешь. Я вот что такое. – Наташа взяла, округлив руки, свою юбку, как танцуют, отбежала несколько шагов, перевернулась, сделала антраша, побила ножкой об ножку и, став на самые кончики носков, прошла несколько шагов.
– Ведь стою? ведь вот, – говорила она; но не удержалась на цыпочках. – Так вот я что такое! Никогда ни за кого не пойду замуж, а пойду в танцовщицы. Только никому не говори.
Ростов так громко и весело захохотал, что Денисову из своей комнаты стало завидно, и Наташа не могла удержаться, засмеялась с ним вместе. – Нет, ведь хорошо? – всё говорила она.
– Хорошо, за Бориса уже не хочешь выходить замуж?
Наташа вспыхнула. – Я не хочу ни за кого замуж итти. Я ему то же самое скажу, когда увижу.
– Вот как! – сказал Ростов.
– Ну, да, это всё пустяки, – продолжала болтать Наташа. – А что Денисов хороший? – спросила она.
– Хороший.
– Ну и прощай, одевайся. Он страшный, Денисов?
– Отчего страшный? – спросил Nicolas. – Нет. Васька славный.
– Ты его Васькой зовешь – странно. А, что он очень хорош?
– Очень хорош.
– Ну, приходи скорей чай пить. Все вместе.
И Наташа встала на цыпочках и прошлась из комнаты так, как делают танцовщицы, но улыбаясь так, как только улыбаются счастливые 15 летние девочки. Встретившись в гостиной с Соней, Ростов покраснел. Он не знал, как обойтись с ней. Вчера они поцеловались в первую минуту радости свидания, но нынче они чувствовали, что нельзя было этого сделать; он чувствовал, что все, и мать и сестры, смотрели на него вопросительно и от него ожидали, как он поведет себя с нею. Он поцеловал ее руку и назвал ее вы – Соня. Но глаза их, встретившись, сказали друг другу «ты» и нежно поцеловались. Она просила своим взглядом у него прощения за то, что в посольстве Наташи она смела напомнить ему о его обещании и благодарила его за его любовь. Он своим взглядом благодарил ее за предложение свободы и говорил, что так ли, иначе ли, он никогда не перестанет любить ее, потому что нельзя не любить ее.
– Как однако странно, – сказала Вера, выбрав общую минуту молчания, – что Соня с Николенькой теперь встретились на вы и как чужие. – Замечание Веры было справедливо, как и все ее замечания; но как и от большей части ее замечаний всем сделалось неловко, и не только Соня, Николай и Наташа, но и старая графиня, которая боялась этой любви сына к Соне, могущей лишить его блестящей партии, тоже покраснела, как девочка. Денисов, к удивлению Ростова, в новом мундире, напомаженный и надушенный, явился в гостиную таким же щеголем, каким он был в сражениях, и таким любезным с дамами и кавалерами, каким Ростов никак не ожидал его видеть.

Вернувшись в Москву из армии, Николай Ростов был принят домашними как лучший сын, герой и ненаглядный Николушка; родными – как милый, приятный и почтительный молодой человек; знакомыми – как красивый гусарский поручик, ловкий танцор и один из лучших женихов Москвы.
Знакомство у Ростовых была вся Москва; денег в нынешний год у старого графа было достаточно, потому что были перезаложены все имения, и потому Николушка, заведя своего собственного рысака и самые модные рейтузы, особенные, каких ни у кого еще в Москве не было, и сапоги, самые модные, с самыми острыми носками и маленькими серебряными шпорами, проводил время очень весело. Ростов, вернувшись домой, испытал приятное чувство после некоторого промежутка времени примеривания себя к старым условиям жизни. Ему казалось, что он очень возмужал и вырос. Отчаяние за невыдержанный из закона Божьего экзамен, занимание денег у Гаврилы на извозчика, тайные поцелуи с Соней, он про всё это вспоминал, как про ребячество, от которого он неизмеримо был далек теперь. Теперь он – гусарский поручик в серебряном ментике, с солдатским Георгием, готовит своего рысака на бег, вместе с известными охотниками, пожилыми, почтенными. У него знакомая дама на бульваре, к которой он ездит вечером. Он дирижировал мазурку на бале у Архаровых, разговаривал о войне с фельдмаршалом Каменским, бывал в английском клубе, и был на ты с одним сорокалетним полковником, с которым познакомил его Денисов.
Страсть его к государю несколько ослабела в Москве, так как он за это время не видал его. Но он часто рассказывал о государе, о своей любви к нему, давая чувствовать, что он еще не всё рассказывает, что что то еще есть в его чувстве к государю, что не может быть всем понятно; и от всей души разделял общее в то время в Москве чувство обожания к императору Александру Павловичу, которому в Москве в то время было дано наименование ангела во плоти.
В это короткое пребывание Ростова в Москве, до отъезда в армию, он не сблизился, а напротив разошелся с Соней. Она была очень хороша, мила, и, очевидно, страстно влюблена в него; но он был в той поре молодости, когда кажется так много дела, что некогда этим заниматься, и молодой человек боится связываться – дорожит своей свободой, которая ему нужна на многое другое. Когда он думал о Соне в это новое пребывание в Москве, он говорил себе: Э! еще много, много таких будет и есть там, где то, мне еще неизвестных. Еще успею, когда захочу, заняться и любовью, а теперь некогда. Кроме того, ему казалось что то унизительное для своего мужества в женском обществе. Он ездил на балы и в женское общество, притворяясь, что делал это против воли. Бега, английский клуб, кутеж с Денисовым, поездка туда – это было другое дело: это было прилично молодцу гусару.
В начале марта, старый граф Илья Андреич Ростов был озабочен устройством обеда в английском клубе для приема князя Багратиона.
Граф в халате ходил по зале, отдавая приказания клубному эконому и знаменитому Феоктисту, старшему повару английского клуба, о спарже, свежих огурцах, землянике, теленке и рыбе для обеда князя Багратиона. Граф, со дня основания клуба, был его членом и старшиною. Ему было поручено от клуба устройство торжества для Багратиона, потому что редко кто умел так на широкую руку, хлебосольно устроить пир, особенно потому, что редко кто умел и хотел приложить свои деньги, если они понадобятся на устройство пира. Повар и эконом клуба с веселыми лицами слушали приказания графа, потому что они знали, что ни при ком, как при нем, нельзя было лучше поживиться на обеде, который стоил несколько тысяч.
– Так смотри же, гребешков, гребешков в тортю положи, знаешь! – Холодных стало быть три?… – спрашивал повар. Граф задумался. – Нельзя меньше, три… майонез раз, – сказал он, загибая палец…
– Так прикажете стерлядей больших взять? – спросил эконом. – Что ж делать, возьми, коли не уступают. Да, батюшка ты мой, я было и забыл. Ведь надо еще другую антре на стол. Ах, отцы мои! – Он схватился за голову. – Да кто же мне цветы привезет?
– Митинька! А Митинька! Скачи ты, Митинька, в подмосковную, – обратился он к вошедшему на его зов управляющему, – скачи ты в подмосковную и вели ты сейчас нарядить барщину Максимке садовнику. Скажи, чтобы все оранжереи сюда волок, укутывал бы войлоками. Да чтобы мне двести горшков тут к пятнице были.
Отдав еще и еще разные приказания, он вышел было отдохнуть к графинюшке, но вспомнил еще нужное, вернулся сам, вернул повара и эконома и опять стал приказывать. В дверях послышалась легкая, мужская походка, бряцанье шпор, и красивый, румяный, с чернеющимися усиками, видимо отдохнувший и выхолившийся на спокойном житье в Москве, вошел молодой граф.
– Ах, братец мой! Голова кругом идет, – сказал старик, как бы стыдясь, улыбаясь перед сыном. – Хоть вот ты бы помог! Надо ведь еще песенников. Музыка у меня есть, да цыган что ли позвать? Ваша братия военные это любят.
– Право, папенька, я думаю, князь Багратион, когда готовился к Шенграбенскому сражению, меньше хлопотал, чем вы теперь, – сказал сын, улыбаясь.
Старый граф притворился рассерженным. – Да, ты толкуй, ты попробуй!
И граф обратился к повару, который с умным и почтенным лицом, наблюдательно и ласково поглядывал на отца и сына.
– Какова молодежь то, а, Феоктист? – сказал он, – смеется над нашим братом стариками.
– Что ж, ваше сиятельство, им бы только покушать хорошо, а как всё собрать да сервировать, это не их дело.
– Так, так, – закричал граф, и весело схватив сына за обе руки, закричал: – Так вот же что, попался ты мне! Возьми ты сейчас сани парные и ступай ты к Безухову, и скажи, что граф, мол, Илья Андреич прислали просить у вас земляники и ананасов свежих. Больше ни у кого не достанешь. Самого то нет, так ты зайди, княжнам скажи, и оттуда, вот что, поезжай ты на Разгуляй – Ипатка кучер знает – найди ты там Ильюшку цыгана, вот что у графа Орлова тогда плясал, помнишь, в белом казакине, и притащи ты его сюда, ко мне.
– И с цыганками его сюда привести? – спросил Николай смеясь. – Ну, ну!…
В это время неслышными шагами, с деловым, озабоченным и вместе христиански кротким видом, никогда не покидавшим ее, вошла в комнату Анна Михайловна. Несмотря на то, что каждый день Анна Михайловна заставала графа в халате, всякий раз он конфузился при ней и просил извинения за свой костюм.
– Ничего, граф, голубчик, – сказала она, кротко закрывая глаза. – А к Безухому я съезжу, – сказала она. – Пьер приехал, и теперь мы всё достанем, граф, из его оранжерей. Мне и нужно было видеть его. Он мне прислал письмо от Бориса. Слава Богу, Боря теперь при штабе.