Как легко и понято объяснить, что такое четырехмерное пространство? Вознесение - переход в четвертое измерение Пространства.

Почему люди веками пытаются понять и объяснить четырёхмерное пространство? Зачем им это нужно? Что толкает их на поиски загадочного четырёхмерного мира? Представляется, что этому есть несколько причин.

Во-первых, людей подталкивает к поиску невидимого пространства неосознаваемое ими чувствознание, другими словами, вера в Высшие основы Мироздания, как память о пребывании в том мире ещё до момента своего рождения.

Во-вторых, на существование Высшего мира прямо указывают все мировые религии и эзотерические учения. Данный факт невозможно сбросить со счетов или объявить случайным совпадением случайностей. Тем более, что случайность является всего лишь математической абстракцией и потому принципиально нереализуема в реальном мире, в котором все события строго обусловлены причинно-следственными связями.

В-третьих, на это указывает опыт, накопленный огромным числом экстрасенсов и мистиков всех времён и народов, в большинстве случаев никак не связанных между собой и не знакомых с опытом своих «коллег», но свидетельствующих, фактически, об одном и том же. Более того, каждый человек проводит в том мире третью часть своей жизни; это происходит во время сна.

Так в чём же тогда состоит проблема понимания четырёхмерного пространства?

Введение

С одной стороны, никакой проблемы понимания четырёхмерного пространства, казалось бы, не должно быть вовсе, так как имеется современное Учение – Агни Йога , бóльшая часть книг которого почти целиком посвящена мирам высшей размерности. Имеются также подробнейшие разъяснения базовых положений этого Учения и, в частности, всех основных особенностей многомерных миров .

С другой стороны, проблема налицо, поскольку в науке Вот что говорит об этом великий математик Гильберт: «вообразим три системы вещей, которые мы назовём точками, прямыми и плоскостями. Что это за "вещи" – мы не знаем, да и незачем нам это знать. Было бы даже греховно стараться это узнать». таких важнейших компонентов пространства, как точка , прямая , плоскость , а понятие размерность На самом деле размерность пространства определяется не числом мифических, другими словами абстрактных «осей», а числом допустимых (для данного пространства) направлений движения, например: вперёд-назад, влево-вправо, вверх-вниз для пространства 3-х измерений. отражает фундаментальное свойство размерности пространства. Всё это в совокупности с верой в Использование древних (возрастом 2500 лет) математических абстракций непрерывности, бесконечности и нуля (как порождения бесконечности) в задачах исследования многомерных пространств можно сравнить с применением топора для раскалывания атомных ядер в физике. способствует появлению различных заблуждений и противоречий, например, таких как:

  • оперирование понятием пространства бесконечно большой размерности;
  • отрицание возможности существования даже четырёхмерного пространства только на том основании, что четвёртую ортогональную координатную ось провести невозможно;
  • непонимание сути многомерности пространства;
  • игнорирование То, что наука называет полями (например, электромагнитное поле) или никак не называет (например, мир чувств, мир мыслей, ...), на самом деле являются реально существующими пространствами высшей размерности. пространств высшей размерности;
  • разработка Прежде всего, это касается моделей многомерных пространств с координатными осями, скрученными в колечки, трубочки и бублички, которые рассматриваются в рамках так называемой «Теории струн». не имеющих ничего общего с реальностью .

Предпринималось много попыток обосновать существование высшего, четырехмерного пространства. Среди них известны математические, физические, геометрические, психологические и другие попытки . Однако все их можно признать неудачными, поскольку они так и не дали чёткого и верного ответа на главный вопрос: что собой представляет и куда направлена «ось» 4-го измерения.

Рассмотрим теперь основные подходы к конструированию 4-х мерного пространства подробнее.

1. Принцип наращивания размерностей

Данный подход, или принцип основан на следующих простых рассуждениях. Пусть, к примеру, имеется 3D-объект – школьная тетрадь в линейку. Здесь буква «D» означает «размерность» (от англ. слова Dimension ). Будучи трёхмерным объектом, тетрадь обладает тремя измерениями: длиной, шириной и толщиной.

Открыв тетрадь, мы можем наглядно убедиться в том, что «пространство» нулевой размерности (точки линеек) вложено в одномерное «пространство» (горизонтальные линии), а оно, в свою очередь, вложено в двухмерное «пространство» (страницу). Двухмерное «пространство», или страницы вложено в трёхмерное (тетрадь).

Простая индукция позволяет предположить, что трёхмерное пространство должно быть вложено в четырёхмерное, и так далее .

Рис. 1.1. Построение «4-х мерного» гиперкуба.

Прежде всего, здесь следует отметить, что наращивание размерности пространства на этапах 0D → 1D , 1D → 2D , 2D → 3D всегда осуществлялось в направлении, ортогональном предыдущим направлениям. При переходе же к 4D-пространству этот принцип был нарушен, что ставит под сомнение как допустимость такого приёма, так и справедливость полученных результатов.

Кроме того, поскольку математическая точка не обладает размерами, то «пространства» с размерностью 0, 1 и 2 являются (также как и сама точка) лишь математическими абстракциями, то есть реально существовать не могут. Таким образом, минимальная размерность реального пространства равна трём: D min = 3. Следовательно, принцип индукции, выведенный для абстрактных объектов, не может быть положен в основу конструирования реального 4-х мерного пространства, а само 4-х мерное пространство не может быть объяснено рассмотренным выше способом.

Выводы 1: 1.1. Четырёхмерное пространство, полученное путём наращивания размерностей, является не более чем математической абстракцией, то есть игрой воображения. 1.2. Применение принципа наращивания размерностей для обоснования 4D-пространства чревато формированием ложных представлений о многомерных пространствах (рис. 1.2). 1.3. Наш 3-х мерный мир, который мы видим, ощущаем и понимаем, принципиально не может оказаться вложенным в какой-либо другой мир с числом измерений, отличным от трёх.

Рис. 1.2. Якобы 4-х мерный гиперкуб.

Тем не менее, отметим в нашем примере с тетрадкой и запомним два очень важных момента:

  1. Низшее пространство всегда мысленно «вкладывалось» в высшее , то есть в пространство с бóльшим числом измерений.
  2. Все рассмотренные пространства наполнены материей одного типа, то есть трёхмерной атомарной материей. В примере это были атомы, входящие в состав тетрадной бумаги и краски.

2. Принцип аналогий

Этот способ создания «четырёхмерных» фигур близок к рассмотренному в предыдущем разделе. В отличии от своих предшественников сторонники данного способа честно признают тот факт, что четвёртую ортогональную ось провести невозможно, но уверяют, что для получения четвёртого измерения необходимо и достаточно простых аналогий (табл. 2.1). Однако доказательства четырёхмерности полученных фигур, к сожалению, не приводятся.

Рис. 2.1. Построение «4-х мерного» гипертетраэдра.

Рассматривая рисунок 2.1 слева направо и фиксируя свойства геометрических объектов, придём к таблице свойств.

Таблица 2.1

Отрезок – 1D Треугольник – 2D Тетраэдр – 3D Симплекс – 4D
2 вершины 3 вершины 4 вершины 5 вершин
1 ребро 3 ребра 6 рёбер 10 рёбер
1 грань 3 грани 10 граней
1 тетрагрань 5 тетраграней
1 симплекс-грань

Как видно из рисунка и таблицы, в основе «принципа аналогий» лежит идея достаточности для перехода в новое измерение простого увеличения числа вершин геометрической фигуры и попарного соединения всех вершин рёбрами.

Более наглядное представление о принципе аналогий можно получить, просмотрев фрагмент видеофильма .

Подводя итоги, сформулируем выводы.

Выводы 2: 2.1. Основанные на принципе аналогий «многомерные» построения являются математическими абстракциями и существуют исключительно в воображении. 2.2. Разработанные виртуальные (компьютерные) реализации «четырёхмерных» геометрических многогранников не могут служить обоснованием реальности таких объектов, поскольку само понятие «виртуальный» является синонимом понятия «не существующий в реальности». 2.3. Перенесение этих абстракций в реальный мир требует предварительного доказательства их многомерности.

3. Принцип многомерных массивов

В предыдущих разделах мы убедились, что понять и описать реальное (не абстрактное) 4-х мерное пространство оказалось совсем непросто. Однако математика, как известно, с лёгкостью оперирует так называемыми многомерными объектами, например, «многомерными» массивами и векторами.

В связи с данным обстоятельством возникает идея применить для описания многомерных пространств и объектов якобы многомерные математические конструкции, например, массивы. Задать многомерный массив можно, дав определение, но можно ввести его в рассмотрение и поэтапно, то есть путём последовательных рассуждений, аналогичных проделанным в примере со школьной тетрадкой. Пойдём вторым путём:

  • Положение точки x на отрезке прямой задаётся одной координатой, другими словами, однокомпонентным одномерным массивом: A 1 = (x 1);
  • Положение точки x на плоскости определяется двумя координатами, то есть двухкомпонентным одномерным массивом: A 2 = (x 1 , x 2);
  • Положение точки x в трёхмерном пространстве будет описано тремя координатами, или трёхкомпонентным одномерным массивом: A 3 = (x 1 , x 2 , x 3);
  • Продолжая индукцию, придём к четырёхкомпонентному одномерному массиву, описывающему положение точки x в четырёхмерном гиперпространстве: A 4 = (x 1 , x 2 , x 3 , x 4).

Применяя понятие массива рекурсивно, то есть вкладывая одни массивы в другие, можно ввести иерархическую систему массивов для описания более крупных пространственных объектов:

  • Точка – массив координат в текущем пространстве;
  • Линия – массив точек (матрица);
  • Страница – массив линий («куб»);
  • Книга – массив страниц («гиперкуб»);
  • Книжная полка – массив книг (массив 5-го порядка);
  • Книжный шкаф – массив полок (массив 6-го порядка);
  • Книгохранилище – массив шкафов (массив 7-го порядка).

Приведём ещё один пример применения моделей пространства на основе вложенных многомерных массивов:

  • Атом – (одномерный) массив координат;
  • Молекула – (двухмерный) массив атомов;
  • Тело – (трёхмерный) массив молекул;
  • Небесное тело – (четырёхмерный) массив тел;
  • Звёздная система – (пятимерный) массив небесных тел;
  • Галактика – (шестимерный) массив звёздных систем;
  • Вселенная – (семимерный) массив Галактик.
Выводы 3: 3.1. Все объекты в рассмотренной иерархической модели имеют одинаковую пространственную размерность, которая определяется числом компонентов исходного одномерного массива. Однако этим компонентам можно дать не только пространственную, но и произвольную интерпретацию. 3.2. Ни количество вложенных массивов, ни их размерность (правильнее говорить – порядок !) никак не связаны с мерностью моделируемого пространства. 3.3. Таким образом, применив «многомерные» (правильнее говорить – многокомпонентные !) массивы, мы опять ни на шаг не приблизились к нашей цели – пониманию смысла многомерного пространства.

4. Принцип сущностей

Попробуем теперь от идеи конструирования мифических якобы «четырёхмерных» объектов перейти к реальным сущностям, чтобы взглянуть на мир как бы изнутри, то есть их «глазами». Предположим также, что в пространстве любой размерности (например, в трёхмерном пространстве) могут одновременно пребывать существа разного уровня развития, с разными возможностями по перемещению в пространстве, то есть с разным числом измерений.

Начнём с камней. К этой же группе можно причислить также «тессеракты», «симплексы» и все прочие многогранники. Это всё пассивные объекты, не способные к движению ни в одном из направлений. Поэтому отнесём их к категории «существ» Строго говоря, камни могут двигаться в 3-х направлениях: перемещаться ледниками, погружаться под воду, выходить из глубин океана на поверхность суши, разрушаться под воздействием волн или атмосферы. Однако эти движения происходят по нашим меркам очень медленно, со скоростью смены геологических эпох. То есть сущности «нулевой» размерности живут в других временных рамках, или с другой скоростью, не сопоставимой с той, что привычна нам. размерности.

К Если быть объективными, то надо признать, что растения не одномерны, а трёхмерны, так как способны перемещаться не только вверх, но и в пределах поверхности: в результате размножения (корнями или семенами). Однако такое движение будет проявлено лишь через год (при неблагоприятных обстоятельствах – через несколько лет), то есть со скоростью значительно меньшей скорости роста растения. сущностям можно отнести растения, которые имеют возможность «двигаться» только в одном направлении (в «направлении» увеличения своих размеров) с жёсткой привязкой к одной конкретной точке пространства.

Отметим, что двухмерные сущности тоже способны к перемещению в дополнительном, третьем направлении. Например, попадая на тело животных или человека, или могут быть перемещены вверх/вниз потоками воды или порывами ветра. Однако та же объективность требует признать движение в третьем направлении исключением, не свойственным двумерным сущностям от природы. существами назовём тех, кто будет способен перемещаться в двух направлениях, то есть в пределах поверхности. Даже если эта поверхность имеет сложные очертания и переходит, например, с поверхности почвы в поверхность ствола дерева.

Простая аналогия позволяет предположить, что трёхмерные существа должны иметь способность перемещаться в 3-х различных направлениях. Например, они должны уметь не только ползать, но и ходить, прыгать или летать.

Та же аналогия приводит нас к выводу об обязательном наличии у четырёхмерных сущностей четвёртой сверх способности к перемещению в 4-м направлении. Таким направлением может стать движение внутрь трёхмерных объектов.

Свойствами 4-х мерных сущностей обладают, например, эфир (радиоволны), радиоактивные ядра гелия (альфа-частицы), вирусы и так далее.

Выводы 4: 4.1. Четырёхмерные сущности невидимы. Например, размеры вируса лишь на два порядка превышают размеры атома. На острие иглы могут свободно разместиться 100 000 вирусов гриппа. 4.2. Логично предположить, что невидимые четырёхмерные сущности обитают в невидимом четырёхмерном пространстве. 4.3. Четырёхмерное пространство должно обладать очень тонкой структурой. Например, пространством обитания вируса является биологическая клетка, размеры которой измеряются нанометрами (1 нм = 1/1000000000 м). 4.4. Координатная «ось» четвёртого измерения направлена внутрь трёхмерного пространства. 4.5. Само по себе четырёхмерное пространство и четырёхмерные сущности трёхмерны. Однако относительно трёхмерного пространства они обладают свойствами 4-го измерения.

5. Принцип композиции

С появлением Теории относительности в сознании широких масс укоренилось представление о времени, как о четвёртой пространственной координате . Примирению разума со столь странной точкой зрения, очевидно, способствовали также различные временные графики, тренды и диаграммы. Удивительно только, что творческое воображение приверженцев такого взгляда на много мерное пространство почему-то всегда таинственным образом полностью иссякает на цифре «четыре».

Из физики известно, что существуют различные системы физических единиц, в частности, система СГС (сантиметр-грамм-секунда) , где в качестве независимых физических величин используются длина, масса и время. Все остальные величины выводятся из трёх основных. Таким образом, в роли трёх «китов» Мироздания в СГС выступают Пространство, Материя и Время.

В современной физике пространство и время искусственно объединены в единый четырёхмерный «континуум», называемый пространством Минковского . Многие искренне верят в то, что оно и есть то самое четырёхмерное пространство. Однако подобный взгляд на многомерное пространство чреват появлением целого ряда нелогичностей и несуразностей.

Во-первых, время, будучи независимой величиной, не может выступать в качестве свойства (пространственной характеристики) другой независимой величины – пространства.

Во-вторых, если всерьёз считать время четвёртой пространственной координатой, то в таком случае четырёхмерные сущности (то есть все мы, как обитатели «четырёхмерного» пространства-времени) должны обладать способностью перемещаться не только в пространстве, но и во времени! Однако мы знаем, что это не так. Таким образом, одна из якобы пространственных координат не обладает свойствами, которые присущи настоящим пространственным координатам.

В-третьих, настоящее пространство не может само по себе перемещаться относительно своих неподвижных обитателей ни в одном из своих направлений. Однако пространство-время такой фантастической способностью обладает. Более того, оно движется в четвёртом (временном) направлении исключительно избирательно: с разной скоростью по отношению к камням, растениям, животным и людям.

В-четвёртых, можно предположить, что по логике релятивистов 5-ти мерным пространством должна стать композиция пространства-времени с третьим «китом» Мироздания – материей.

В-пятых, напрашивается резонный вопрос: с какой системой единиц (СГСЭ или СГСМ) будет связано 6D-пространство?

Рис. 5.1. Релятивистский 4D «континуум».

Однако самым парадоксальным в релятивистском видении 4D-пространства является то, что на типичном релятивистском 3-х мерном графическом изображении якобы 4-х мерного пространства (рис. 5.1) 4-я координатная (временнáя) ось отсутствует как таковая (!); зато хорошо виден результат присутствия материи (массы), которая в составе четырёхмерного «пространства-времени» даже не упоминается. ☺

Наверное, именно поэтому словосочетание «пространство-время» так часто вызывает скепсис и ассоциируется с бородатым анекдотом про то, как в армии был найден собственный способ композиции пространства и времени, выразившийся в приказе рыть канаву от забора до обеда.

Выводы 5: 5.1. Совместное рассмотрение пространства и времени вполне допустимо. 5.2. Наделение времени свойствами пространства – искусственный приём, далёкий от реальности. 5.3. Релятивистский «четырёхмерный» пространственно-временной «континуум» не имеет ни малейшего отношения к реальному четырёхмерному пространству, тем более, к пространствам, размерность которых превышает 4, и является ещё одним примером математических фантазий на тему многомерности.

6. Принцип схлопывания

Поскольку центральным вопросом любой модели 4-х мерного пространства является вопрос о выборе направления 4-ой пространственной координаты, в разделах 1 – 5 были рассмотрены различные подходы к решению этой проблемы.

Так, авторы «четырёхмерных» многогранников направляли четвёртую ось, куда хотели. Авторы многомерных массивов – в никуда. Вирусы и другие четырёхмерные сущности могли перемещаться внутрь трёхмерного пространства. Релятивисты же наделили обитателей 4-х мерного пространства (к которым они причислили и всех нас) способностью перемещаться во времени, как в обычном пространстве, значит, – в любом временнóм направлении.

Казалось бы, все варианты уже исчерпаны, и настал момент определиться с выбором одного из известных направлений для четвёртой оси. Ан, нет! Авторы модной ныне «Теории струн» нашли ещё одно никем не занятое «направление». Глядя на смотанный поливочный шланг, они придумали все «лишние» координатные оси скрутить в колечки, трубочки и бублички. А чтобы объяснить, почему мы их не видим, наделили колечки размерами, которые «бесконечно малы даже в масштабе субатомных частиц» . Сторонники струнной теории считают, что все высшие пространственные измерения самопроизвольно схлопнулись, или по научному «компактифицировались» сразу после образования Вселенной.

Рис. 6.1. «Схлопнувшиеся» Высшие пространства «глазами» Теории струн.

Предвосхищая другой вопрос, – Зачем схлопнулись? – Теория струн выдвинула также гипотезу «ландшафта», в соответствии с которой никакого «схлопывания» вовсе и не было, все оси высших измерений целёхоньки, а невидимы они для нас по той причине, что наше 3-х мерное пространство, будучи гиперповерхностью (брáной) многомерного пространства Вселенной, якобы не позволяет нам взглянуть за пределы этой самой браны. К сожалению, ориентированы невидимые координатные оси в никому неизвестных направлениях.

Кроме перечисленного, нельзя не коснуться также других «заслуг» Теории струн.

Теория эта создавалась для описания физических закономерностей, проявляющихся на самом низком уровне рассмотрения материи, то есть на уровне субатомных частиц, а также их взаимодействий. Однако ситуация, когда одна гипотеза (Теория струн) пытается описать другие гипотезы (догадки о строении и о количестве элементарных частиц), представляется весьма сомнительной. Настораживает также полное отсутствие единого мнения по вопросу о реальном числе измерений многомерной Вселенной.

Существует множество способов свести многомерные струнные модели к наблюдаемому 3-х мерному пространству. Однако критерия для определения оптимального пути редукции не существует. В то же время, количество таких вариантов поистине огромно. По некоторым оценкам их число вообще бесконечно.

Кроме того, «математический аппарат теории струн столь сложен, что сегодня никто даже не знает точных уравнений этой теории. Вместо этого физики используют лишь приближенные варианты этих уравнений, и даже эти приближенные уравнения столь сложны, что пока поддаются только частичному решению» . При этом хорошо известно, что чем сложнее теория, тем дальше она отстоит от Истины.

Будучи исключительно продуктом воображения, Теория струн остро нуждается в экспериментальном подтверждении и проверке, однако, скорее всего, в обозримом будущем её нельзя будет ни подтвердить, ни проверить в силу очень серьёзных технологических ограничений. В этой связи некоторые учёные сомневаются, заслуживает ли вообще такая теория статуса научной.

Выводы 6: 6.1. Сосредоточив всё внимание на описании мельчайших частиц, Теория струн упустила из виду объяснение таких проявлений миров Высшей размерности, как вещие сны, астральные выходы, одержание, телепатия, пророчества и т. п. 6.2. То обстоятельство, что Теория струн хорошо описывает целый ряд явлений без привлечения старых физических теорий, подтверждает гипотезу о реальной многомерности Вселенной.

7. Принцип бесконечной рекурсии

Принцип бесконечной рекурсии или фрактальности Мира основан на гипотезе о бесконечной делимости материи и берёт своё начало с трудов греческого философа Анаксагора (5-й век до Р. Х.), утверждавшего, что в каждой частице, какой бы малой она ни была, «есть города, населённые людьми, обработанные поля, и светит солнце, луна и другие звёзды, как у нас».

В философском плане данную идею разделял, к примеру, В. И. Ленин (1908), считавший, что «электрон так же неисчерпаем, как и атом, природа бесконечна ...». В литературе – Джонатан Свифт со своим знаменитым Гулливером (1727). В поэзии – Валерий Брюсов (1922):

Сторонники рекурсивного подхода из числа современных учёных считают, что Вселенная состоит из бесконечного числа вложенных фрактальных уровней материи с подобными друг другу характеристиками. Пространство при этом имеет дробную размерность стремящуюся к трём. Точное значение размерности зависит от строения материи и её распределения в пространстве.

Таким образом, здесь имеются два принципиальных момента, которые, фактически, обесценивают безусловно продуктивную идею о вложенности материи и планов Мироздания друг в друга. Во-первых, это совершенно бессмысленное вложение гигантской Вселенной в каждую микрочастицу собственной материи. Во-вторых, исключительно вольное обращение с понятием размерности.

Поскольку темой статьи является уяснение принципов многомерности пространства, остановимся на втором моменте более подробно.

Например, С. И. Сухонос , соглашаясь с тем, что даже паутинка трёхмерна, всерьёз обосновывает нульмерность Вселенной... для «внешнего наблюдателя». Однако, пребывая внутри замкнутого пространства Вселенной, мы не в праве делать какие-либо умозаключения о том, что находится за её внешней границей. Таким образом, любые рассуждения о мыслях «внешнего наблюдателя» относятся, в лучшем случае, к жанру научной фантастики.

Галактикам, в плане размерности, повезло несколько больше, чем Вселенной: их скопления автор признаёт одномерными, «неправильные» Галактики считает двухмерными, «правильные» (сферической формы) – трёхмерными, а статусом четырёхмерного пространства наделяет спиральные Галактики.

К сожалению, понятие «размерность» пространства в этих рассуждениях связано, прежде всего, с понятием «размер», затем – «форма» и меньше всего размерность зависит от числа измерений материи.

Выводы 7: 7.1. Бесконечность, будучи продуктом воображения, не реализуема в реальном мире, следовательно идея бесконечной рекурсии является не более, чем мифом. 7.2. Суждение о том, что часть (к примеру, атом) может содержать целое (Вселенную), является абсурдом. 7.3. Пространства с дробной размерностью не существуют по определению, а взгляд сторонников рекурсивного подхода на размерность противоречит общепринятым представлениям и здравому смыслу.

Заключение

  1. На адекватное отражение реальной картины мира может претендовать не более, чем только одна из рассмотренных выше моделей 4-х мерного пространства, поскольку все они между собой попарно не совместны.
  2. Все проблемы с пониманием многомерного пространства существуют исключительно внутри науки, в основном, в математике.
  3. Базовые математические абстракции, прежде всего, «бесконечность», «непрерывность» и «нуль» не позволяют понять и описать пространства с размерностью выше трёх, поэтому все существующие представления о якобы многомерном пространстве выглядят смешно и наивно.
  4. Разработка математических моделей пространств высшей размерности невозможна без пересмотра древних (2500-летней давности) догматов трёхмерной (то есть современной) математики.
  5. Представление о разработанной автором реальной (не фантастической) многомерной модели вложенных пространств можно найти в .

Литература

  1. Агни Йога. – 15 книг в 3-х томах. – Самара, 1992.
  2. Клизовский А. И. Основы миропонимания Новой Эпохи. В 3-х томах. – Рига: Виеда, 1990.
  3. Микиша А. М., Орлов В. Б. Толковый математический словарь: Основные термины. М.: Рус. яз., 1989. – 244 с.
  4. Девис. П. Суперсила: Поиски единой теории природы. – М.: Мир, 1989. – 272 с.
  5. Тессеракт: Материал из Википедии. – http://ru.wikipedia.org/wiki/Тессеракт
  6. Измерения: видеофильм, часть 3 из 9 / Авторы: Йос Лейс (Jos Leys), Этьен Жис (Étienne Ghys), Орельян Альварез (Aurélien Alvarez). – 14 мин (фрагмент – 2 мин).
  7. Александр Котлин. Пространство-материя. Концепция. –
  8. Специальная теория относительности: Материал из Википедии. – http://ru.wikipedia.org/wiki/Специальная%20теория%20относительности
  9. Успенский П. Д. Tertium organum: Ключ к загадкам мира. – Типогpафiя СПб. Т-ва Печ. и Изд. дела «Тpyдъ», 1911.
  10. СГС: Материал из Википедии. – http://ru.wikipedia.org/wiki/СГС
  11. Четырёхмерное пространство: Материал из Википедии. – http://ru.wikipedia.org/wiki/Четырёхмерное%20пространство
  12. Пространство-время: Материал из Википедии. – http://ru.wikipedia.org/wiki/Пространство-время
  13. Брайан Грин. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории: Пер. с англ. / Общ. ред. В. О. Малышенко. – М.: Едиториал УРСС, 2004. – 288 с.
  14. Сухонос С. И. Масштабная гармония Вселенной. – М.: Новый центр, 2002. – 312 с.
  15. Александр Котлин. Как понять 10-ти мерное пространство? –

27 мая 2012 года
17 июня 2012 года
3 июля 2012 года
17 октября 2012 года
21 декабря 2012 года

Во-первых, многомерность понимается всегда как четырехмерность, то есть существование наряду с обычными тремя пространственными измерениями (нагляднее всего их можно представить себе как смещения в трех направлениях; вверх-вниз, вперед-назад и влево-вправо) и еще одного, четвертого. За это новое измерение принимали время. Это имело известные основания, поскольку в начале века появилась теория относительности с ее понятием единого пространственно- временного континуума. Однако надо понимать, что если исходить из современной физики, то для нашей обычной жизни, обычных скоростей и расстояний, теория относительности приобретает банальный облик привычного из школьных представлений пространства и независимо от него текущего времени. И это даже в том случае, если за обычные скорости и расстояния взять размеры Солнечной системы и скорости движения планет. Поэтому теория относительности в передаче обычной человеческой жизни, основной темы художников, ничего изменить не должна.

Вторым моментом, который хотелось бы отметить, является то, что значительно более сложное четырехмерное пространство, где четвертой координатой является не время (что себе легко представить), а тоже пространственная координата (что представить себе немыслимо), уже давно привлекло внимание художников. Более того, они даже разработали успешные методы его изображения. Речь идет об иконописцах в основном XV столетия » в это время передача четырехмерного пространства достигла наибольшего совершенства в русской иконописи.

Прежде чем переходить к рассмотрению соответствующих икон, необходимо дать ряд пояснений геометрического характера, чтобы общие рассуждения о четырехмерном пространстве и возможных способах его изображения приобрели наглядность. Главная трудность в наглядном описании геометрии четырехмерного пространства связана с тем, что представить себе его нельзя. Это невозможно, поскольку требует от нас кроме естественных трех направлений (о них уже говорилось: направления вперед-назад, влево-вправо и вверх-вниз) представить себе движение в «четвертом» направлении, но такое, при котором в трех естественных направлениях движения не происходит. Иными словами, для нас, существ трехмерных, точка будет видна неподвижной, а на самом деле она будет двигаться в «четвертом» направлении. Единственный метод, который может здесь помочь,» это метод аналогий. Будем исходить из того, что наш привычный трехмерный мир «вложен» в четырехмерное пространство, что легко описать словами, но представить себе нельзя. Но зато ничего не стоит представить себе аналогичную, но элементарно простую ситуацию: двухмерный мир, «вложенный» в трехмерный. Хотя бы лист бумаги, находящийся в привычном для нас трехмерном пространстве.

Пусть теперь этот лист бумаги будет тем двухмерным «пространством», на котором живут некие «плоские» существа, могущие ползать по листу; плоские существа, ползающие по плоскому листу, » аналогия нас, трехмерных организмов, перемещающихся в трехмерном пространстве. Пусть этот лист будет безграничным, а по его обеим сторонам ползают эти самые плоские существа: одни с верхней стороны листа, другие » с нижней. Совершенно очевидно, что, сколько бы они ни ползали, верхние никогда не встретятся с нижними, хотя они могут быть бесконечно близки друг к другу » ведь их все равно будет разделять бесконечно тонкая толщина непроницаемого листа. Таким образом, каждую точку листа надо будет считать дважды » как принадлежащую верхней и как принадлежащую нижней стороне. Естественно, что на верхней стороне листа могут происходить одни, а на нижней » другие события, причем эти события не будут мешать друг другу, поскольку они сдвинуты относительно друг друга хотя и на бесконечно малую величину, но в «непостижимом» для плоских существ направлении » перпендикулярно поверхности листа. Эта «непостижимость» обусловлена для плоских существ тем, что последние никогда в своей жизни в таком направлении не перемещались и перемещаться не могут.

Эти две стороны одного листа позволяют по аналогии представить себе одновременное существование в некотором месте, хотя бы в комнате, обычного и мистического пространства. В первом живут и действуют люди, а во втором, например, ангелы. И те, и другие существуют в своих трехмерных пространствах и действуют, не мешая друг другу, поскольку эти два пространства «сдвинуты» относительно друг друга хотя и на бесконечно малую величину, но в непостижимом для людей «четвертом» направлении (напомним сделанное выше предположение, что наше обычное пространство «вложено» в четырехмерное). И в этом случае каждую точку подобной условной комнаты надо будет считать дважды » как принадлежащую мистическому и одновременно обычному пространству. Здесь полная аналогия с плоским листом, вложенным» в трехмерное пространство. Ведь можно для полноты аналогии условиться, что верхняя сторона листа является мистической, а нижняя » обычной поверхностью.

» мы коснёмся широко известной проблемы числа измерений в целом и перехода в них в частности. Мы постараемся рассмотреть этот вопрос не с традиционно мистической точки зрения, а с точки зрения практической (с помощью практических упражнений и обучающих видео).

Переход в четвёртое измерение интересовал людей очень и очень давно. Однако до сих пор существует две группы взглядов, которые по-разному относятся к четвёртому измерению. Одна из групп — это пространственное четвёртое измерение, а вторая — это временно е четвёртое измерение.

Пространственное четвёртое измерение очень хорошо проиллюстрировано в одном из выпусков журнала Трамвай, где была опубликована статья про четырёхмерную мышь (если что — она называется «Мышь ЧЕ-ТЫ-РЁХ-МЕР-НАЯ» и прочесть её можно здесь http://tramwaj.narod.ru/Archive/LJ_archive_2.htm). Там проводилась такая аналогия: для жителей одного измерения (линия) любые двухмерные существа будут восприниматься лишь как компоненты одного измерения. Всё, что выходит за рамки этого измерения, не будет замечено (ибо нечем смотреть).

Точно так же, жители двухмерного пространства (плоскости) могут увидеть жителей трёхмерного пространства лишь в качестве их двухмерных отпечатков-проекций. Им попросту нечем увидеть третье измерение. То есть, если бы человек попал в это двухмерное пространство, то в лучшем случае местные обитатели плоскости знакомились с отпечатками его подошв. А в худшем — поперечным срезом 🙂

Аналогично жители третьего измерения (то есть, мы с вами) могут увидеть четырёхмерных существ лишь как их трёхмерные проекции. То есть, обычные тела, имеющие длину, ширину и высоту.

Более высокое измерение имеет по отношению к более низкому измерению одно важное преимущество: существа из более высоких измерений могут нарушать законы физики более низких измерений. Так, если в двухмерной вселенной, на плоскости, посадить жителя в тюрьму, то он не сможет выбраться из неё, окружённый со всех двух сторон (поскольку измерений только два) стенами. Но если посадить в такую тюрьму трёхмерное существо (вернее, лишь его проекцию), то оно с лёгкостью выходит из двух измерений, скажем, вверх — и оказывается вне двухмерной тюрьмы.

Точно такие же плюшки доступны четырёхмерным существам в нашей трёхмерной вселенной. Согласитесь, всё это звучит очень заманчиво, мистично, и при овладении четвёртым измерением обещает принести массу бонусов типа подглядывания в женских раздевалках 🙂 Возможно, именно поэтому среди требований к переходящим в это измерение есть высокая этичность.

Но не будем углубляться в мистичные дебри — ведь мы обещали практику, а не мистику. Для этого обобщим. Так, одно обычное измерение перпендикулярно другому и третьему, образуя всем знакомые оси координат:

Тогда как по этой логике четвёртое пространственное измерение должно быть перпендикулярно этим трём.

Переход в четвёртое пространственное измерение осуществляется с помощью развития особого органа восприятия этого измерения. Обычно этот орган называется «третий глаз». Поскольку под этим словосочетанием что только не понимается, его мы использовать не будем. Тем более что четвёртое пространственное измерение воспринимается отнюдь не глазами. В качестве совета по развитию органа восприятия четвёртого пространственного измерения мы приведём упражнение из книги П.Д. Успенского (ученик Гурджиева, если что) «TERTIUM ORGANUM» (третий орган, если перевести):

Тренируйтесь видеть (для начала — в воображении) объёмные фигуры (кубы, пирамиды, сферы и т.д.) сразу со всех сторон.

Вот такое вот простое описание к сложному упражнению. Надеемся, всё понятно: обычно мы можем видеть максимум 3 стороны куба. А надо представить себе куб так, как если бы мы его видели со всех шести сторон сразу. Головоломка, да? 🙂

Для того, чтобы получить больше массы о четвёртом пространственном измерении, вы можете воспользоваться этими видео:

Первая часть видео про четвёртое измерение:

Вторая часть видео про четвёртое измерение

Рассмотрев практическую тренировку для перехода в пространственное четвёртое измерение, рассмотрим ещё один момент. Как это ни странно, четвёртое (а также пятое, шестое … одиннадцатое) пространственные измерения — отнюдь не пустой звук. По крайней мере, в свете последних достижений теории суперструн.

Так, для того, чтобы законы физики одинаково работали и на микро-, и на макроуровнях (от уровня, в тысячи раз меньшего, чем размеры молекулы, до межгалактических расстояний), в формулах необходимо наличие одиннадцати пространственных измерений. Три из этих измерений развёрнуты, а остальные — свёрнутые, и именно поэтому мы их не воспринимаем. Хотя колебания составляющих субатомных частиц очень даже зависят от этих свёрнутых измерений.

К сожалению, древние маги про эти свёрнутые измерения даже не подозревали, поэтому переход в эти свёрнутые измерения остаётся пока что совершенно оккультным, то есть тайным. Ибо если кто и придумал, как это делать, то не сказал как.

Сейчас самое время перейти к четвёртому измерению с точки зрения времени. Этот подход широко разработан физиками, так что особо рассказывать здесь нечего. Единственное кажущееся отличие временно го измерения в том, что по нему нельзя двигаться назад, как по трём пространственным. Лишь вперёд. Однако, это не совсем так — и именно этот нюанс даёт ключ к переходу в четвёртое временно е измерение.

Мало того, если для того, чтобы воспринять четвёртое пространственное измерение, нужно тренировать особый орган, для работы с четвёртым временны м измерением орган уже есть. И мало того, с помощью этого органа люди могут двигаться по этому измерению как назад, в прошлое, так и вперёд, в будущее.

Вы уже догадались, что это за штука такая, позволяющая путешествовать во времени?

Совершенно верно, это человеческий ум.

Следовательно, переход в четвёртое временно е измерение — это лишь образное выражение. Мы все и так находимся в этом четвёртом временно м измерении. Однако не все одинаково. Есть люди, которые помнят лишь вчерашний день и не заглядывают дальше завтрашнего. Их четвёртое измерение мизерно, а жизнь тяжела (хотя со стороны может казаться весёлой и беззаботной).

И, наоборот, существуют люди, которые в состоянии заглянуть далеко-далеко в прошлое, сравнить полученные данные с наблюдениями из настоящего и сделать практические выводы как про ближайшее, так и про отдалённое будущее. Как видите, эти люди овладели четвёртым измерением в очень значительной мере. В результате жизнь таких людей намного более стабильна, спокойна и счастлива.

Поэтому стоит вопрос не в переходе во временно е четвёртое измерение, а в углублении этого измерения. Ну а для этого нужно тренировать свой ум. Как это делать? Да очень просто. Главное, чтобы отрабатывалась основная деятельность ума: сравнивать данные из прошлого с данными из настоящего и делать правильные выводы. Ну а методов существует просто громадное количество.

Ещё один нюанс — это данные, которые использует ум для работы. Ведь если данные поступают на обработку ошибочные (из прошлого или из настоящего), то и выводы будут ошибочными. И тогда получится не четвёртое измерение, а фигня какая-то.

Почему бывают ошибочными полученные данные из прошлого и настоящего? Всё очень просто: потому что это неверно оцененные данные вследствие болезненного опыта. Пример: человека покусала собака, и теперь всегда, когда он видит собак, то получает данные не о их реальных намерениях или виде, а глюк из прошлого, связанный с болью. Следовательно, выводы на будущее (например «все собаки опасны») будут ложными. А четвёртое измерение — с червоточинкой.

Как избежать таких ошибок? Естественно, правильно оценив данные, полученные при наличии боли, столкновении или потере. Как это сделать? Этих способов намного меньше, чем способов совершенствования мышления. Но они есть, и вы сможете при желании их найти 🙂

Таким образом, переход в четвёртое измерение зависит от того, куда вы хотите перейти.

Удачных переходов!

Если что — пишите в комментарии!

    четырёхмерное пространство - keturmatė erdvė statusas T sritis fizika atitikmenys: angl. four dimensional space vok. vierdimensionaler Raum, m rus. четырёхмерное пространство, n pranc. espace à quatre dimensions, m … Fizikos terminų žodynas

    Трёхмерное пространство - Трёхмерная метрика пространства … Википедия

    ПРОСТРАНСТВО И ВРЕМЯ - категории, обозначающие осн. формы существования материи. Пр во (П.) выражает порядок сосуществования отд. объектов, время (В.) порядок смены явлений. П. и в. осн. понятия всех разделов физики. Они играют гл. роль на эмпирич. уровне физ. познания … Физическая энциклопедия

    Четырёхимпульс - Четырёхимпульс, 4 импульс 4 вектор энергии импульса, релятивистское обобщение классического трёхмерного вектора импульса (количества движения) на четырёхмерное пространство время. Три компоненты классического вектора импульса… … Википедия

    Четырёх-импульс - Четырёхимпульс, 4 импульс 4 вектор энергии импульса, релятивистское обобщение классического трёхмерного вектора импульса (количества движения) на четырёхмерное пространство время. Три компоненты классического вектора импульса материальной точки… … Википедия

    Пространство Минковского - У этого термина существуют и другие значения, см. Пространство Минковского (значения). Иллюстрация парадокса близнецов на диаграмме Минковского … Википедия

    Пространство - в математике, логически мыслимая форма (или структура), служащая средой, в которой осуществляются другие формы и те или иные конструкции. Например, в элементарной геометрии плоскость или пространство служат средой, где строятся… …

    Минковского пространство - четырёхмерное пространство, объединяющее физическое трёхмерное пространство и время; введено Г. Минковским (См. Минковский) в 1907 1908. Точки в М. п. соответствуют «событиям» специальной теории относительности (см. Относительности… … Большая советская энциклопедия

    МИНКОВСКОГО ПРОСТРАНСТВО-ВРЕМЯ - четырехмерное пр во, объединяющее физ. трёхмерное пр во и время; введено нем. учёным Г. Минковским (Н. Minkowski) в 1907 08. Точки в М. п. в. соответствуют «событиям» спец. теории относительности (СТО; (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ)). Положение… … Физическая энциклопедия

    РИМАНОВО ПРОСТРАНСТВО - пространство, точки к рого однозначнозадаются координатами х= (х 1,..., х п)(бытьможет, локальными) и в к ром определён метрический тензор. Число. наз. размерностью пространства. В случае, когда Р. п. не допускаетвведения единой системы… … Физическая энциклопедия

Книги

  • Вселенские матрицы. "Цветок вселенской духовной любви и мудрости" . Космическая генетика. ДНК сверхспособности, гениальности и бессмертия. Том 2. Космобиоэнергетика , Вселенский Е., Вселенская Л.. Е. Н. Вселенский - академик, известный целитель и психолог, основатель Международной Академии Наук Планетарного и Вселенского Синтеза Осознания Человечества (МАНПВСОЧ). Супруги Вселенские в… Купить за 619 руб
  • Вселенские матрицы. Космический код жизни. Часть 3. Перепрограммирование матриц своей судьбы , Е. Н. Вселенский, Л. А. Вселенская. Пособие для раскрашивания является приложением к книге супругов Вселенских с одноименным названием и в то же время может выступать как самостоятельное произведение, предназначенное для…

> Четырехмерное пространство и время

Как представить четырехмерное пространство и время в специальной теории относительности: измерения Вселенной, система координат и преобразования Лоренца.

Мы существуем в четырехмерном пространстве-времени, где упорядочение неких событий может зависеть от наблюдателя.

Задача обучения

  • Разобраться в основных выводах специальной теории относительности.

Основные пункты

  • Мы существуем в четырехмерной Вселенной: первые три измерения – пространственные, а четвертое – время.
  • Система координат физических наблюдателей объединена преобразованием Лоренца.
  • Ничто не может превысить световую скорость.

Термины

  • Элемент линии – неизменная величина в специальной теории относительности.
  • Преобразование Лоренца – объединяет координаты пространства-времени систем отсчета.

Функционирование в четырех измерениях

Давайте взглянем на двух наблюдателей, перемещающихся относительно друг друга со стабильной скоростью. Обозначим их как А и А’. Первый создает пространственно-временную систему координат t, x, y, z, а второй – t", x", y", z". Заметно, что оба существуют в четырехмерном мире, где три измерения отводятся пространству и одно – времени.

В обеих конструкция перемещается со скоростью v по отношению к несжимаемой системе

Вас не должна пугать работа с четырьмя измерениями, потому что каждый раз, когда вы видите кого-то, то сталкиваетесь с этим явлением. То есть, вы всю жизнь находились в четырех измерениях, просто скорее всего считали время и пространство полностью раздельными.

Перемещение света

Допустим, что в определенный момент в пространстве-времени появляется световой луч. Оба наблюдателя вычисляют, какую дистанцию он проделал за временной промежуток. У наблюдателя А:

(Δt, Δx, Δy, Δz), где Δt = t - t 0 (t – время, в котором проводилось измерение; t 0 – время, за которое свет включался).

Δt′,Δx′, Δy′, Δz′, где мы устанавливаем систему так, чтобы оба наблюдателя пребывали в согласии (t 0 , x 0 , y 0 , z 0). Из-за неизменности скорости света оба соотносятся:

Здесь T, X, Y, Z относятся к координатам в любой системе. Есть правило, которому должны следовать все световые пути. Для общих событий можно определить величину:

s 2 = -c 2 Δt 2 + Δx 2 + Δy 2 + Δz 2

Это элемент линии, который будет одинаковым для всех наблюдателей. Если мы возьмем множество всех преобразованных координат, составляющих неизменную величину, то получим преобразование Лоренца. В итоге, системы координат всех физических наблюдателей объединяются этим показателем:

Разделение между точками пространства-времени определяется через:

s 2 > 0: подобно пространству.

s 2 < 0: как время.

s 2 = 0: нуль.

Мы разделяем эти события, потому что все они разные. Например, в подобном пространству разделении всегда можно отыскать преобразование координат, отменяющее упорядочение времени событий.

Космические пространственные разрывы

Взглянем на две катастрофы в Нью-Йорке и Лондоне. Они произошли в одно время и в едином кадре. Здесь пространственно-временное разделение выступает подобным пространству. Будут ли они одновременными – относительный вопрос: в некоторых системах – да, а в других – нет.

Подобные времени и нулевые пространственно-временные разрывы

Временные или нулевые события не разделяют это свойство, поэтому между ними возникает причинно-следственный порядок. То есть, два события отделены во времени и способны оказывать воздействие. Дело в том, что они могут посылать световой сигнал от одной точки в другую.

Специальная теория относительности

Энергия объекта, перемещающегося на скорости v, равна:

(m 0 – масса объекта в состоянии покоя, а m = γm 0 – масса, когда объект перемещается). Эта формула сразу показывает, почему невозможно обогнать световую скорость. При v → c, m → ∞, и для ускорения объекта требуется бесконечное количество энергии.