Ковалентная связь осуществляется. Типы химической связи

Ковалентной связью называется связывание атомов с помощью общих (поделенных между ними) электронных пар.В слове "ковалентная" приставка "ко-" означает "совместное участие". А "валента" в переводе на русский – сила, способность. В данном случае имеется в виду способность атомов связываться с другими атомами.

При образовании ковалентной связи атомы объединяют свои электроны как бы в общую "копилку" – молекулярную орбиталь, которая формируется из атомных оболочек отдельных атомов. Эта новая оболочка содержит по возможности завершенное число электронов и заменяет атомам их собственные незавершенные атомные оболочки.

Представления о механизме образования молекулы водорода были распространены на более сложные молекулы. Разработанная на этой основе теория химической связи получила название метода валентных связей (метод ВС). В основе метода ВС лежат следующие положения:

1) Ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

2) Ковалентная связь тем прочнее, чем в большей степени перекрываются электронные облака.

Комбинации двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем. Примеры построения валентных схем:

В валентных схемах наиболее наглядно воплощены представления Льюиса об образовании химической связи путем обобществления электронов с формированием электронной оболочки благородного газа: для водорода – из двух электронов (оболочка He ), для азота – из восьми электронов (оболочка Ne ).

29.Неполярная и полярная ковалентная связь.

Если двухатомная молекула состоит из атомов одного элемента, то электронное облако распределяется в пространстве симметрично относительно ядер атомов. Такая ковалентная связь называется неполярной. Если ковалентная связь образуется между атомами различных элементов, то общее электронное облако смещено в сторону одного из атомов. В этом случае ковалентная связь является полярной.

В результате образования полярной ковалентной связи более электроотрицательный атом приобретает частичный отрицательный заряд, а атом с меньшей электроотрицательностью – частичный положительный заряд. Эти заряды принято называть эффективными зарядами атомов в молекуле. Они могут иметь дробную величину.

30.Способы выражения ковалентной связи.

Существуют два главных способа образования ковалентной связи * .

1) Электронная пара, образующая связь, может образоваться за счет неспаренных электронов , имеющихся в невозбужденныхатомах . Увеличение числа создаваемых ковалентных связей сопровождается выделением большего количества энергии, чем затрачивается на возбуждение атома. Поскольку валентность атома зависит от числа неспаренных электронов, возбуждение приводит к повышению валентности. У атомов азота, кислорода, фтора количество неспаренных электронов не увеличивается, т.к. в пределах второго уровня нет свободных орбиталей *, а перемещение электронов на третий квантовый уровень требует значительно большей энергии, чем та, которая выделилась бы при образовании дополнительных связей. Таким образом, при возбуждении атома переходы электронов на свободные орбитали возможны только в пределах одного энергетического уровня .

2) Ковалентные связи могут образовываться за счет спаренных электронов, имеющихся на внешнем электронном слое атома. В этом случае второй атом должен иметь на внешнем слое свободную орбиталь. Атом, предоставляющий свою электронную пару для образования ковалентной связи *, называется донором, а атом, предоставляющий пустую орбиталь, – акцептором. Ковалентная связь, образованная таким способом, называется донорно-акцепторной связью. В катионе аммония эта связь по своим свойствам абсолютно идентична трем другим ковалентным связям, образованным первым способом, поэтому термин “донорно-акцепторная” обозначает не какой-то особый вид связи, а лишь способ ее образования.

Ковалентная связь осуществляется за счёт обобществления электронов, принадлежащих обоим участвующим во взаимодействии атомам. Электроотрицательности неметаллов достаточно велики, поэтому передачи электронов не происходит.

Электроны, находящиеся на перекрывающихся электронных орбиталях, поступают в общее пользование. При этом создаётся ситуация, при которой внешние электронные уровни атомов оказываются заполненными, то есть образуется 8-ми или 2-х электронная внешняя оболочка.

Состояние, при котором электронная оболочка заполнена полностью, характеризуется наименьшей энергией, а соответственно, и максимальной устойчивостью.

Механизмов образования два:

  1. донорно-акцепторный;
  2. обменный.

В первом случае один из атомов предоставляет свою пару электронов, а второй - свободную электронную орбиталь.

Во втором - в общую пару приходит по одному электрону от каждого участника взаимодействия.

В зависимости от того, к какому типу относятся - атомному или молекулярному, соединения с подобным видом связи могут значительно различаться по физико-химическим характеристикам.

Молекулярные вещества чаще всего газы, жидкость или твёрдые вещества с низкими температурами плавления и кипения, неэлектропроводные, обладающие малой прочностью. К ним можно отнести: водород (H 2), кислород (O 2), азот (N 2), хлор (Cl 2), бром (Br 2), ромбическую серу (S 8), белый фосфор (P 4) и другие простые вещества; диоксид углерода (CO 2), диоксид серы (SO 2), оксид азота V (N 2 O 5), воду (H 2 O), хлороводород (HCl), фтороводород (HF), аммиак (NH 3), метан (CH 4), этиловый спирт (C 2 H 5 OH), органические полимеры и другие.

Вещества атомные существуют в виде прочных кристаллов, имеющих высокие температуры кипения и плавления, не растворимы в воде и прочих растворителях, многие не проводят электрический ток. Как пример можно привести алмаз, который обладает исключительной прочностью. Это объясняется тем, что алмаз представляет собой кристалл, состоящий из атомов углерода, соединённых ковалентными связями. В алмазе нет отдельных молекул. Также атомным строением обладают такие вещества, как графит, кремний (Si), диоксид кремния (SiO 2), карбид кремния (SiC) и другие.

Ковалентные связи могут быть не только одинарными (как в молекуле хлора Cl2), но также двойные, как в молекуле кислорода О2, или тройные, как, например, в молекуле азота N2. При этом тройные имеют большую энергию и более прочны, чем двойные и одинарные.

Ковалентная связь может быть образована как между двумя атомами одного элемента (неполярная), так и между атомами различных химических элементов (полярная).

Указать формулу соединения с ковалентной полярной связью не представляет труда, если сравнить значения электроотрицательностей, входящих в состав молекул атомов. Отсутствие разницы в электроотрицательности определит неполярность. Если же разница есть, то молекула будет полярна.

Не пропустите: механизм образования , конкретные примеры.

Ковалентная неполярная химическая связь

Характерна для простых веществ неметаллов . Электроны принадлежат атомам в равной степени, и смещения электронной плотности не происходит.

Примером могут служить следующие молекулы:

H2, O2, О3, N2, F2, Cl2.

Исключением являются инертные газы . Их внешний энергетический уровень заполнен полностью, и образование молекул им энергетически не выгодно, в связи с чем они существуют в виде отдельных атомов.

Также примером веществ с неполярной ковалентной связью будет, например, РН3. Несмотря на то, что вещество состоит из различных элементов, значения электроотрицательностей элементов фактически не различаются, а значит, смещения электронной пары происходить не будет.

Ковалентная полярная химическая связь

Рассматривая ковалентную полярную связь, примеров можно привести множество: HCl, H2O, H2S, NH3, CH4, CO2, SO3, CCl4, SiO2, СО.

образуется между атомами неметаллов с различной электроотрицательностью. При этом ядро элемента с большей электроотрицательностью притягивает общие электроны ближе к себе.

Схема образования ковалентной полярной связи

В зависимости от механизма образования общими могут становиться электроны одного из атомов или обоих .

На картинке наглядно представлено взаимодействие в молекуле соляной кислоты.

Пара электронов принадлежит и одному атому, и второму, у обоих, таким образом, внешние уровни заполнены. Но более электроотрицательный хлор притягивает пару электронов чуть ближе к себе (при этом она остаётся общей). Разница в электроотрицательности недостаточно большая, чтобы пара электронов перешла к одному из атомов полностью. В результате возникает частичный отрицательный заряд у хлора и частичный положительный у водорода. Молекула HCl является полярной молекулой.

Физико-химические свойства связи

Связь можно охарактеризовать следующими свойствами : направленность, полярность, поляризуемость и насыщаемость.

Ковалентная, ионная и металлическая – три основных типа химических связей.

Познакомимся подробнее с ковалентной химической связью . Рассмотрим механизм ее возникновения. В качестве примера возьмем образование молекулы водорода:

Сферически симметричное облако, образованное 1s-электроном, окружает ядро свободного атома водорода. Когда атомы сближаются до определенного расстояния, происходит частичное перекрывание их орбиталей (см. рис.), в результате чего появляется молекулярное двухэлектронное облако между центрами обоих ядер, которое обладает максимальной электронной плотностью в пространстве между ядрами. При увеличении же плотности отрицательного заряда происходит сильное возрастание сил притяжения между молекулярным облаком и ядрами.

Итак, мы видим, что ковалентная связь образуется путем перекрывания электронных облаков атомов, которое сопровождается выделением энергии. Если расстояние между ядрами у сблизившихся до касания атомов составляет 0,106 нм, тогда после перекрывания электронных облаков оно составит 0,074 нм. Чем больше перекрывание электронных орбиталей, тем прочнее химическая связь.

Ковалентной называется химическая связь, осуществляемая электронными парами . Соединения с ковалентной связью называют гомеополярными или атомными .

Существуют две разновидности ковалентной связи : полярная и неполярная .

При неполярной ковалентной связи образованное общей парой электронов электронное облако распределяется симметрично относительно ядер обоих атомов. В качестве примера могут выступать двухатомне молекулы, которые состоят из одного элемента: Cl 2 , N 2 , H 2 , F 2 , O 2 и другие, электронная пара в которых в принадлежит обоим атомам в одинаковой мере.

При полярной ковалентной связи электронное облако смещено к атому с большей относительной электроотрицательностью. Например молекулы летучих неорганических соединений таких как H 2 S, HCl, H 2 O и другие.

Образование молекулы HCl можно представить в следущем виде:

Т.к. относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1), электронная пара смещается к атому хлора.

Помимо обменного механизма образования ковалентной связи – за счет перекрывания, также существует донорно-акцепторный механизм ее образования. Это механизм, при котором образование ковалентной связи происходит за счет двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора). Давайте рассмотрим пример механизма образования аммония NH 4 + .В молекуле аммиака у атома азота есть двухэлектронное облако:

Ион водорода имеет свободную 1s-орбиталь, обозначим это как .

В процессе образования иона аммония двухэлектронное облако азота становится общим для атомов азота и водорода, это значит оно преобразуется в молекулярное электронное облако. Следовательно, появляется четвертая ковалентная связь. Можно представить процесс образования аммония такой схемой:

Заряд иона водорода рассредоточен между всеми атомами, а двухэлектронное облако, которое принадлежит азоту, становится общим с водородом.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Химической связью называют взаимодействие частиц (ионов или атомов), которое осуществляется в процессе обмена электронами, находящимися на последнем электронном уровне. Существует несколько видов такой связи: ковалентная (она делится на неполярную и полярную) и ионная. В этой статье мы подробнее остановимся именно на первом виде химических связей - ковалентных. А если быть точнее, то на полярном ее виде.

Ковалентная полярная связь - это химическая связь между валентными электронными облаками соседних атомов. Приставка «ко-» - означает в данном случае «совместно», а основа «валента» переводится как сила или способность. Те два электрона, которые связываются между собой, называют электронной парой.

История

Впервые этот термин употребил в научном контексте лауреат Нобелевской премии химик Ирвинг Леннгрюм. Произошло это в 1919 году. В своей работе ученый объяснял, что связь, в которой наблюдаются общие для двух атомов электроны, отличается от металлической или ионной. А значит, требует отдельного названия.

Позже, уже в 1927 году, Ф. Лондон и В. Гайтлер, взяв в качестве примера молекулу водорода как химически и физически наиболее простую модель, описали ковалентную связь. Они взялись за дело с другого конца, и свои наблюдения обосновывали, используя квантовую механику.

Суть реакции

Процесс преобразования атомарного водорода в молекулярный является типичной химической реакцией, качественным признаком которой служит большое выделение теплоты при объединении двух электронов. Выглядит это примерно так: два атома гелия приближаются друг к другу, имея по одному электрону на своей орбите. Затем эти два облака сближаются и образуют новое, похожее на оболочку гелия, в котором вращаются уже два электрона.

Завершенные электронные оболочки устойчивее, чем незавершенные, поэтому их энергия существенно ниже, чем у двух отдельных атомов. При образовании молекулы излишек тепла рассеивается в окружающей среде.

Классификация

В химии выделяют два вида ковалентной связи:

  1. Ковалентная неполярная связь, образующаяся между двумя атомами одного неметаллического элемента, например кислород, водород, азот, углерод.
  2. Ковалентная полярная связь, возникает между атомами разных неметаллов. Хорошим примером может служить молекула хлороводорода. Когда атомы двух элементов соединяются друг с другом, то неспаренный электрон от водорода частично переходит на последний электронный уровень атома хлора. Таким образом, на атоме водорода образуется положительный заряд, а на атоме хлора - отрицательный.

Донорно-акцепторная связь также является видом ковалентной связи. Она заключается в том, что один атом из пары предоставляет оба электрона, становясь донором, а принимающий их атом, соответственно, считается акцептором. При образовании связи между атомами, заряд донора увеличивает на единицу, а заряд акцептора снижается.

Семиполярная связь - е е можно считать подвидом донорно-акцепторной. Только в этом случае объединяются атомы, один из которых имеет законченную электронную орбиталь (галогены, фосфор, азот), а второй - два неспаренных электрона (кислород). Образование связи проходит в два этапа:

  • сначала от неподеленной пары отрывает один электрон и присоединяется к неспаренным;
  • объединение оставшихся неспаренных электродов, то есть формируется ковалентная полярная связь.

Свойства

Полярная ковалентная связь имеет свои физико-химические свойства, такие как направленность, насыщаемость, полярность, поляризуемость. Именно они определяют характеристики образующихся молекул.

Направленность связи зависит от будущего молекулярного строения образующегося вещества, а именно от геометрической формы, которую формируют два атома при присоединении.

Насыщаемость показывает, сколько ковалентных связей способен образовать один атом вещества. Это число ограничено количеством внешних атомных орбиталей.

Полярность молекулы возникает потому, что электронное облако, образующееся из двух разных электронов, неравномерно по всей своей окружности. Это возникает из-за разницы отрицательного заряда в каждом из них. Именно это свойство и определяет, полярная связь или неполярная. Когда объединяются два атома одного элемента, электронное облако симметрично, значит, связь ковалентная неполярная. А если объединяются атомы разных элементов, то формируется асимметричное электронное облако, так называемый дипольный момент молекулы.

Поляризуемость отражает то, насколько активно электроны в молекуле смещаются под действием внешних физических или химических агентов, например электрического или магнитного поля, других частиц.

Два последних свойства образующейся молекулы определяют ее способность реагировать с другими полярными реагентами.

Сигма-связь и пи-связь

Формирование этих связей зависит от плотности распределения электронов в электронном облаке в процессе формирования молекулы.

Для сигма-связи характерно наличие плотного скопления электронов вдоль оси, соединяющей ядра атомов, то есть в горизонтальной плоскости.

Пи-связь характеризуется уплотнение электронных облаков в месте их пересечения, то есть над и под ядром атома.

Визуализация связи в записи формулы

Для примера можем взять атом хлора. На ее внешнем электронном уровне содержится семь электронов. В формуле их располагают тремя парами и одним неспаренным электроном вокруг обозначения элемента в виде точек.

Если таким же образом записывать молекулу хлора, то будет видно, что два неспаренных электрона образовали пару, общую для двух атомов, она называется поделенной. При этом каждый из них получил по восемь электронов.

Правило октета-дублета

Химик Льюис, который предположил, как образуется ковалентная полярная связь, первым из своих коллег сформулировал правило, объясняющее устойчивость атомов при их объединении в молекулы. Суть его заключается в том, что химические связи между атомами образуются в том случае, когда обобществляется достаточное количество электронов, чтобы получилась электронная конфигурация, повторяющая подобная атомам благородных элементов.

То есть при образовании молекул для их стабилизации необходимо, чтобы все атомы имели законченный внешний электронный уровень. Например, атомы водорода, объединяясь в молекулу, повторяют электронную оболочку гелия, атомы хлора, приобретают схожесть на электронном уровне с атомом аргона.

Длина связи

Ковалентная полярная связь, кроме всего прочего, характеризуется определенным расстоянием между ядрами атомов, образующих молекулу. Они находятся на таком расстоянии друг от друга, при котором энергия молекулы минимальна. Для того чтобы этого достичь, необходимо, чтобы электронные облака атомов максимально перекрывали друг друга. Существует прямо пропорциональная закономерность между размером атомов и длинной связи. Чем больше атом, тем длиннее связь между ядрами.

Возможен вариант, когда атом образует не одну, а несколько ковалентных полярных связей. Тогда между ядрами формируются так называемые валентные углы. Они могут быть от девяноста до ста восьмидесяти градусов. Они и определяют геометрическую формулу молекулы.

Далеко не последнюю роль на химическом уровне организации мира играет способ связи структурных частиц, соединения между собой. Подавляющее число простых веществ, а именно неметаллов, имеют ковалентный неполярный тип связи, за исключением Металлы в чистом виде имею особый способ связи, который реализуется с помощью обобществления свободных электронов в кристаллической решетке.

Виды и примеры которых будут указаны ниже, а точнее, локализация или частичное смещение этих связей к одному из участников связывания, объясняется именно электроотрицательной характеристикой того или иного элемента. Смещение происходит к тому атому, у которого она сильнее.

Ковалентная неполярная связь

«Формула» ковалентной неполярной связи проста - два атома одинаковой природы объединяют в совместную пару электроны своих валентных оболочек. Такая пара называется поделённой потому, что в равной степени принадлежит обоим участникам связывания. Именно благодаря обобществлению электронной плотности в виде пары электронов, атомы переходят в более стабильное состояние, так как завершают свой внешний электронный уровень, а «октет» (или «дуплет» в случае простого вещества водорода Н 2 , у него единственная s-орбиталь, для завершения которой нужно два электрона) - это состояние внешнего уровня, к которому стремятся все атомы, так как его заполнение соответствует состоянию с минимальной энергией.

Пример неполярной ковалентной связи есть в неорганике и, как бы странно это ни звучало, но и в органической химии тоже. Такой тип связи присущ всем простым веществам - неметаллам, кроме благородных газов, так как валентный уровень атома инертного газа уже завершен и имеет октет электронов, а значит, связывание с подобным себе для него не имеет смысла и даже менее энергетически выгодно. В органике неполярность встречается в отдельных молекулах определённой структуры и носит условный характер.

Ковалентная полярная связь

Пример неполярной ковалентной связи ограничивается несколькими молекулами простого вещества, в то время как соединений диполей, в которых электронная плотность частично смещена в сторону более электроотрицательного элемента, - подавляющее большинство. Любое соединение атомов с разной величиной электроотрицательности даёт полярную связь. В частности, связи в органике - это ковалентные полярные связи. Иногда ионные, неорганические оксиды также являются полярными, а в солях и кислотах преобладает ионный тип связывания.

Как крайний случай полярного связывания иногда рассматривают и ионный тип соединений. В случае если электроотрицательность одного из элементов значительно выше, чем у другого, электронная пара полностью сдвигается от центра связи к нему. Так происходит разделение на ионы. Тот, кто забирает электронную пару, превращается в анион и получает отрицательный заряд, а теряющий электрон - превращается в катион и становиться положительным.

Примеры неорганических веществ с ковалентным неполярным типом связи

Вещества с ковалентной неполярной связью - это, например, все бинарные молекулы газов: водород (Н - Н), кислород (О = О), азот (в его молекуле 2 атома связаны тройной связью (N ≡ N)); жидкостей и твёрдых веществ: хлора (Cl - Cl), фтор (F - F), бром (Br - Br), йод (I - I). А также сложные вещества, состоящие из атомов различных элементов, но с фактическим одинаковым значением электроотрицательности, например, гидрид фосфора - РН 3 .

Органика и неполярное связывание

Предельно ясно, что все сложные. Встаёт вопрос, как же в сложном веществе может быть неполярная связь? Ответ довольно прост, если немного логически поразмыслить. Если значения электроотрицательности связанных элементов различаются незначительно и не создают в соединении, такую связь можно считать неполярной. Именно такая ситуация с углеродом и водородом: все С - Н связи в органике считаются неполярными.

Пример неполярной ковалентной связи - молекула метана, простейшего Она состоит из одного атома углерода, который, согласно своей валентности, связан одинарными связями с четырьмя атомами водорода. По сути, молекула не является диполем, так как в ней нет локализации зарядов, в чем-то и за счёт тетраэдрического строения. Электронная плотность распределена равномерно.

Пример неполярной ковалентной связи есть и в более сложных органических соединениях. Реализуется он за счёт мезомерных эффектов, то есть последовательного оттягивания электронной плотности, которое быстро угасает по углеродной цепи. Так, в молекуле гексахлорэтана связь С - С неполярная за счёт равномерного оттягивания электронной плотности шестью атомами хлора.

Прочие типы связей

Кроме ковалентной связи, которая, кстати, может осуществляться и по донорно-акцепторному механизму, имеют место ионная, металлическая и водородная связи. Краткие характеристики предпоследних двух представлены выше.

Водородная связь - это межмолекулярное электростатическое взаимодействие, которое наблюдается, если в молекуле есть атом гидрогена и любой другой, имеющий неподелённые электронные пары. Этот тип связывания гораздо слабее, чем остальные, но за счёт того, что в веществе этих связей может образоваться очень много, вносит значительный вклад в свойства соединения.