Кто и когда изобрел микроскоп? Электронный микроскоп в гараже.

Оглавление темы "Электронная микроскопия. Мембрана.":









Электронные микроскопы появились в 1930-х годах и вошли в повсеместное употребление в 1950-х.

На рисунке изображен современный трансмиссионный (просвечивающий) электронный микроскоп , а на рисунке показан путь электронного пучка в этом микроскопе. В трансмиссионном электронном микроскопе электроны, прежде чем сформируется изображение, проходят сквозь образец. Такой электронный микроскоп был сконструирован первым.

Электронный микроскоп перевернут «вверх дном» по сравнению со световым микроскопом. Излучение подается на образец сверху, а изображение формируется внизу. Принцип действия электронного микроскопа в сущности тот же, что и светового микроскопа. Электронный пучок направляется конденсорными линзами на образец, а полученное изображение затем увеличивается с помощью других линз.

В таблице суммированы некоторые сходства и различия между световым и электронным микроскопами . В верхней части колонны электронного микроскопа находится источник электронов - вольфрамовая нить накала, сходная с той, какая имеется в обычной электрической лампочке. На нее подается высокое напряжение (например, 50 000 В), и нить накала излучает поток электронов. Электромагниты фокусируют электронный пучок.

Внутри колонны создается глубокий вакуум. Это необходимо для того, чтобы сократить до минимума рассеивание электронов из-за столкновения их с частицами воздуха. Для изучения в электронном микроскопе можно использовать только очень тонкие срезы или частицы, так как более крупными объектами электронный пучок почти полностью поглощается. Части объекта, отличающиеся относительно более высокой плотностью, поглощают электроны и потому на сформировавшемся изображении кажутся более темными. Для окрашивания образца с целью увеличения контраста используют тяжелые металлы, такие как свинец и уран.

Электроны невидимы для человеческого глаза, поэтому они направляются на флуоресцирующий , который воспроизводит видимое (черно-белое) изображение. Чтобы получить фотоснимок, экран убирают и направляют электроны непосредственно на фотопленку. Полученный в электронном микроскопе фотоснимок называется электронной микрофотографией.

Преимущество электронного микроскопа :
1) высокое разрешение (0,5 нм на практике)


Недостатки электронного микроскопа :
1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;
2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;
3) дорого стоит и сам электронный микроскоп и его обслуживание;
4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;
5) исследуемые образцы под действием пучка электронов постепенно разрушаются. Поэтому, если требуется детальное изучение образца, необходимо его фотографировать.

Чтобы понять принцип работы светового микроскопа, необходимо рассмотреть его строение.

Главный прибор биологии является оптической системой, которая состоит из штатива, осветительной и оптической части. В штатив входят башмак; предметный столик с держателем предметного стекла и двумя винтами, перемещающими столик в двух перпендикулярных направлениях; тубус, тубусодержатель; макро- и микровинты, передвигающие тубус в вертикальном направлении.

Для освещения объекта используют естественное рассеянное или искусственное освещение, которое осуществляется посредством стационарно вмонтированного в башмак микроскопа или соединенного через планку осветителя.

В осветительную систему также входят зеркало с плоской и вогнутой поверхностями и конденсор, расположенный под предметным столиком и состоящий из 2 линз, ирисовой диафрагмы и откидывающейся оправы для светофильтров. Оптическая часть включает наборы объективов и окуляров, которые позволяют изучать клетки на разных увеличениях.

Принцип работа светового микроскопа заключается в том, что пучок света от источника освещения собирается в конденсаторе и направляется на объект. Пройдя через него, лучи света попадают в систему линз объектива. Они выстраивают первичное изображение, которое увеличивается при помощи линз окуляра. В целом объектив и окуляр дают обратное мнимое и увеличенное изображение объекта.

Основными характеристиками любого микроскопа являются разрешающая способность и контраст.

Разрешающая способность - это минимальное расстояние, на котором находятся две точки, демонстрируемые микроскопом раздельно.

Разрешение микроскопа вычисляет по формуле

где л - длина волны света осветителя,

б - угол между оптической осью объектива и наиболее отклоняющимся лучом, попадающим в него,

n - коэффициент преломления среды.

Чем меньше длина волны луча, тем более мелкие детали мы сможем наблюдать через микроскоп. И чем выше нумерическая апертура объектива (n, тем выше разрешение объектива.

Световой микроскоп может повысить разрешающую способность человеческого глаза примерно в 1000 раз. Это является "полезным" увеличением микроскопа. При использовании видимой части спектра света конченый предел разрешения светового микроскопа составляет 0,2-0,3 мкм.

Однако следует отметить, что световая микроскопия позволяет нам увидеть частицы, меньшие предела разрешения. Это можно осуществить благодаря методу "Темного поля" или "Ультрамикроскопии".

Рис. 1 Световой микроскоп: 1 - штатив; 2 - предметный столик; 3 - насадка; 4 - окуляр; 5 - тубус; 6 - устройство смены объективов; 7 - микрообъектив; 8 - конденсор; 9 - механизм перемещения конденсора; 10 - коллектор; 11 - осветительная система; 12 - механизм фокусировки микроскопа.

Строение электронного микроскопа

Основная часть электронного микроскопа - полый вакуумный цилиндр (воздух откачан, чтобы исключить взаимодействие электронов с его составляющими и оксисления нити катода). Между катодом и анодом подаётся высокое напряжение, для дополнительного ускорения электронов. В конденсорной линзе(которая представляет собой электромагнит, как и все линзы электронного микроскопа) пучок электронов фокусируется и попадает на изучаемый объект. Прошедшие электроны, формируют на объективной линзе увеличенное первичное изображение, которое увеличивает проекционная линза, и проецируется на экран, который покрыт люминесцентным слоем для свечения при попадании на него электронов.

Рис. 2. Электронный микроскоп: 1 - электронная пушка; 2 - анод; 3 - катушка для юстировки пушки; 4 - клапан пушки; 5 - 1-я конденсорная линза; 6 - 2-я конденсорная линза; 7 - катушка для наклона пучка;8 - конденсор 2 диафрагмы; 9 - объективная линза; 10 - блок образца; 11 -дифракционная диафрагма; 12 - дифракционная линза; 13 - промежуточная линза; 14 - 1-я проекционная линза; 15 - 2-я проекционная линза; 16 - бинокуляр (увеличение 12); 17 - вакуумный блок колонны; 18 - камера для 35-миллиметровой катушечной пленки; 19 - экран для фокусировки; 20 - камера для пластинок; 21 - главный экран; 22 - ионный сорбционный насос.

Электронный микроскоп Электронный микроскоп прибор, позволяющий получать изображение объектов с максимальным увеличением до 10 6 раз, благодаря использованию вместо светового потока пучка электронов. Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может составлять несколько ангстрем (10 -7 м).


Появление электронного микроскопа стало возможным после ряда физических открытий конца XIX начала XX века. Это открытие в 1897 году электрона (Дж.Томсон) и экспериментальное обнаружение в 1926 году волновых свойств электрона (К.Дэвиссон, Л.Гермер), подтверждающее выдвинутую в 1924 году де Бройлем гипотезу о корпускулярно-волновом дуализме всех видов материи. В 1926 году немецкий физик X.Буш создал магнитную линзу, позволяющую фокусировать электронные лучи, что послужило предпосылкой для создания в 1930-х годах первого электронного микроскопа. В 1931 году Р.Руденберг получил патент на просвечивающий электронный микроскоп, а в 1932 году М.Кнолль и Э.Руска построили первый прототип современного прибора. Эта работа Э.Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру. В 1938 Руска и Б. фон Боррис построили прототип промышленного просвечивающего электронного микроскопа для фирмы «Сименс-Хальске» в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада). В конце 1930-х начале 1940-х годов появились первые растровые электронные микроскопы (РЭМ), формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-ых годах, когда они достигли значительного технического совершенства. РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов.


Существуют два основных вида электронных микроскопов. просвечивающий электронный микроскопВ 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), растровый (сканирующий) электронный микроскоп в 1950-х годах – растровый (сканирующий) электронный микроскоп (РЭМ)


Просвечивающий электронный микроскоп от ультратонкого объекта Просвечивающий электронный микроскоп (ПЭМ) это установка, в которой изображение от ультратонкого объекта (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране. Просвечивающий электронный микроскоп во многом подобен световому микроскопу, но только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор, ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на люминесцентный экран или фотографическую пластинку. Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Для создания такого поля катод поддерживают под потенциалом порядка В относительно других электродов, фокусирующих электроны в узкий пучок. Эта часть прибора называется электронным прожектором. одной миллиардной атмосферного.Поскольку электроны сильно рассеиваются веществом, в колонне микроскопа, где движутся электроны, должен быть вакуум. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.


Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Витки провода, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Принцип действия магнитной линзы поясняется следующей схемой.


ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (ОПЭМ). 1 – источник электронов; 2 – ускоряющая система; 3 – диафрагма; 4 –конденсорная линза; 5 – образец; 6 – объективная линза; 7 – диафрагма; 8 – проекционная линза; 9 – экран или пленка; 10 – увеличенное изображение. Электроны ускоряются, а затем фокусируются магнитными линзами. Увеличенное изображение, создаваемое электронами, которые проходят через диафрагму объектива, преобразуется люминесцентным экраном в видимое или регистрируется на фотопластинке. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает не увеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец Образец помещается в магнитном поле объектной линзы с большой оптической силой – самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объектная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до ~ (При увеличении в миллион раз грейпфрут вырастает до размеров Земли). Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо- влево.


Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Разрешение.Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимуществ о ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50–100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ~0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ~2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию. В ОПЭМ можно получить увеличение до 1 млн. Предел пространственного (по x, y) разрешения - ~0,17 нм.


Растровая электронная микроскопия Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) прибор, основанный на принципе взаимодействия электронного пучка с веществом, предназначенный для получения изображения поверхности объекта с высоким пространственным разрешением (несколько нанометров), а также о составе, строении и некоторых других свойствах приповерхностных слоёв. Пространственное разрешение сканирующего электронного микроскопа зависит от поперечного размера электронного пучка, который, в свою очередь зависит от электронно-оптической системы, фокусирующей пучок. В настоящее время современные модели РЭМ выпускаются рядом фирм мира, среди которых можно назвать: Carl Zeiss NTS GmbH Германия FEI Company США (слилась с Philips Electron Optics) FOCUS GmbH Германия Hitachi Япония JEOL Япония (Japan Electron Optics Laboratory) Tescan Чехия


1 – источник электронов; 2 – ускоряющая система; 3 – магнитная линза; 4 – отклоняющие катушки; 5 – образец; 6 – детектор отраженных электронов; 7 – кольцевой детектор; 8 – анализатор В РЭМ применяются электронные линзы для фокусировки электронного пучка (электронного зонда) в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис.). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн. электронной колонной Электронные линзы (обычно сферические магнитные) и отклоняющие катушки образуют систему, называемую электронной колонной. Однако РЭМ-метод характеризуется рядом ограничений и недостатков, которые особенно сильно проявляются в субмикронном и нанометровом диапазонах измерений: недостаточно высокое пространственное разрешение; сложность получения трехмерных изображений поверхности, обусловленная в первую очередь тем, что высота рельефа в РЭМ определяется по эффективности упругого и неупругого рассеяния электронов и зависит от глубины проникновения первичных электронов в поверхностный слой; необходимость нанесения дополнительного токосъемного слоя на плохопроводящие поверхности для предотвращения эффектов, связанных с накоплением заряда; проведение измерений только в условиях вакуума; возможность повреждения изучаемой поверхности высокоэнергетичным сфокусированным пучком электронов.


Из-за очень узкого электронного луча РЭМ обладают очень большой глубиной резкости (мм), что на два порядка выше, чем у оптического микроскопа и позволяет получать четкие микрофотографии с характерным трехмерным эффектом для объектов со сложным рельефом. Это свойство РЭМ крайне полезно для понимания поверхностной структуры образца. Микрофотография пыльцы демонстрирует возможности РЭМ.


Сканирующие зондовые микроскопы Сканирующие зондовые микроскопы (СЗМ, англ. SPM Scanning Probe Microscope) класс микроскопов для измерения характеристик объекта с помощью различных типов зондов. Процесс построения изображения основан на сканировании поверхности зондом. В общем случае СЗМ позволяют получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Основные типы сканирующих зондовых микроскопов: Сканирующий туннельный микроскоп Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) или растровый тунельный микроскоп (РТМ) - для получения изображения используется туннельный ток между зондом и образцом, что позволяет получить информацию о топографии и электрических свойствах образца. Сканирующий атомно-силовой микроскоп Сканирующий атомно-силовой микроскоп (АСМ) - регистрирует различные силы между зондом и образцом. Позволяет получить топографию поверхности и её механические свойства. Сканирующий ближнепольный оптический микроскоп Сканирующий ближнепольный оптический микроскоп (СБОМ) - для получения изображения используется эффект ближнего поля.


Отличительной СЗМ особенностью является наличие: зонда, системы перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам, регистрирующей системы. При малом расстоянии между поверхностью и образцом действие сил взаимодействия (отталкивания, притяжения,и других сил) и проявление различных эффектов (например, туннелирование электронов) можно зафиксировать с помощью современных средств регистрации. Для регистрации используют различные типы сенсоров, чувствительность которых позволяет зафиксировать малые по величине возмущения. Работа сканирующего зондового микроскопа основана на взаимодействии поверхности образца с зондом (кантилевер - англ. балка, игла или оптический зонд). Кантилеверы разделяются на жёсткие и мягкие, - по длине балки, а характеризуется это резонансной частотой колебаний кантилевера. Процесс сканирования микрозондом поверхности может происходить как в атмосфере или заранее заданном газе, так и в вакууме, и даже сквозь плёнку жидкости. Кантилевер в сканирующем электронном микроскопе (увеличение 1000X) координатам,


Регистрирующая система фиксирует значение функции, зависящей от расстояния зонд- образец. Для получения полноценного растрового изображения используют различные устройства развертки по осям X и Y (например, пьезотрубки, плоскопараллельные сканеры). Сканирование поверхности может происходить двумя способами, - сканирование кантилевером и сканировение подложкой. Если в первом случае движения вдоль исследуемой поверхности совершает кантилевер, то во втором относительно неподвижного кантилевера движется сама подложка. обратной связи Для сохранения режима сканирования, - кантилевер должен находиться вблизи поверхности, - в зависимости от режима, - будь то режим постоянной силы, или постоянной высоты, существует система, которая могла бы сохранять такой режим во время процесса сканирования. Для этого в электронную схему микроскопа входит специальная система обратной связи, которая связана с системой отклонения кантилевера от первоначального положения. Основные технические сложности при создании сканирующего зондового микроскопа: Конец зонда должен иметь размеры сопоставимые с исследуемыми объектами. Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема. Детекторы должны надежно фиксировать малые по величине возмущения регистрируемого параметра. Создание прецизионной системы развёртки. Обеспечение плавного сближения зонда с поверхностью.


Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) или растровый тунельный микроскоп (РТМ) Сканирующий тунельный микроскоп в современном виде изобретен (принципы этого класса приборов были заложены ранее другими исследователями) Гердом Карлом Биннигом и Генрихом Рорером в 1981 году. За это изобретение они были удостоены Нобелевской премии по физике за 1986 год, которая была разделена между ними и изобретателем просвечивающего электронного микроскопа Э. Руска. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения пА при расстояниях около 1 A. В этом микроскопе используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом.


РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Высокое разрешение СТМ вдоль нормали к поверхности (~0,01 нм) и в горизонтальном направлении (~0,1 нм), которое реализуется как в вакууме, так и с диэлектрическими средами в туннельном промежутке, открывает широкие перспективы повышения точности измерений линейных размеров в нанометровом диапазоне. Платиново - иридиумная игла сканирующего туннельного микроскопа крупным планом.


Сканирующий атомно-силовой микроскоп Сканирующий атомно-силовой микроскоп (АСМ) Атомно-силовая микроскопия поверхности (АСМ), предложенная в 1986 г., основана на эффекте силового взаимодействия между близко расположенными твердыми телами. В отличие от СТМ метод АСМ пригоден для проведения измерений как на проводящих, так и на непроводящих поверхностях не только в вакууме, но и на воздухе и в жидкой среде. Важнейшим элементом АСМ является микрозонд (кантилевер), на конце которого располагается диэлектрическое острие с радиусом кривизны R, к которому с помощью трехкоординатного манипулятора подводится поверхность исследуемого образца на расстояние d0,1÷10 нм. Острие кантилевера обычно закрепляют на пружине, изготовленной в виде кронштейна с малой механической жесткостью. В результате межатомного (межмолекулярного) взаимодействия между образцом и острием кантилевера кронштейн отклоняется. Разрешение АСМ вдоль нормали к поверхности сравнимо с соответствующим разрешением СТМ, а разрешение в горизонтальном направлении (продольное разрешение) зависит от расстояния d и радиуса кривизны острия R. Числовой расчет показывает, что при R=0,5 нм и d=0,4 нм продольное разрешение составляет ~1 нм. Необходимо подчеркнуть, что зондом АСМ является острие иглы, которое позволяет снимать информацию о профиле элемента рельефа поверхности, имеющего нанометровые размеры, но высота (глубина) такого элемента не должна превышать 100 нм, а соседний элемент должен быть расположен не ближе, чем на расстоянии 100 нм. При выполнении некоторых специфических для АСМ условий возможно восстановление профиля элемента без потери информации. Однако эти условия практически невозможно осуществить в эксперименте.



Вид Пространственное разрешение (x,y) Разрешение по z- координате Размер поля Увеличение Оптическая микроскопия 200 нм-0,4 -0,2 мм х Конфокальный микроскоп 200 нм 1 нм Интерферометрия в белом свете 200 нм 0,1 нм 0.05 до x Голографическая микроскопия 200 нм 0,1 нм 0.05 до x Просвечивающий электронный микроскоп 0,2 нм- до Растровый электронный микроскоп (РЭМ) 0,4 нм 0,1 нм 0,1-500 мкм по z - ~1-10 мм до х Сканирующие зондовые микроскопы 0,1 нм 0,05 нм ~150 х 150 мкм по z -



ЭЛЕКТРОННЫЙ МИКРОСКОП - высоковольтный, вакуумный прибор, в котором увеличенное изображение объекта получают с помощью потока электронов. Предназначен для исследования и фотографирования объектов при больших увеличениях. Электронные микроскопы имеют высокую разрешающую способность. Электронные микроскопы находят широкое применение в науке, технике, биологии и медицине.

По принципу действия различают просвечивающие (трансмиссионные), сканирующие, (растровые) и комбинированные электронные микроскопы. Последние могут работать в просвечивающем, сканирующем либо в двух режимах одновременно.

Отечественная промышленность приступила к выпуску просвечивающих электронных микроскопов в конце 40-х годов 20 века Необходимость создания электронного микроскопа была вызвана низкой разрешающей способностью световых микроскопов. Для увеличения разрешающей способности требовался более коротковолновый источник излучения. Решение проблемы стало возможным только с применением в качестве осветителя пучка электронов. Длина волны потока электронов, ускоренных в электрическом поле с разностью потенциалов 50 000 в, составляет 0,005 нм. В настоящее время на просвечивающем электронном микроскопе достигнуто разрешение для пленок золота 0,01 нм.

Схема электронного микроскопа просвечивающего типа: 1 - электронная пушка; 2 - конденсорные линзы; 3 - объектив; 4 - проекционные линзы; 5 - тубус со смотровыми окнами, через которые можно наблюдать изображение; 6 - высоковольтный кабель; 7 - вакуумная система; 8 - пульт управления; 9 - стенд; 10 - высоковольтное питающее устройство; 11 - источник питания электромагнитных линз.

Принципиальная схема просвечивающего электронного микроскопа мало чем отличается от схемы светового микроскопа (см.). Ход лучей и основные элементы конструкции обоих микроскопов аналогичны. Несмотря на большое разнообразие выпускаемых электронных микроскопов, все они построены по одной схеме. Основным элементом конструкции просвечивающего электронного микроскопа является колонна микроскопа, состоящая из источника электронов (электронной пушки), набора электромагнитных линз, предметного столика с объектодержателем, люминесцентного экрана и фоторегистрирующего устройства (см. схему). Все элементы конструкции колонны микроскопа собраны герметично. Системой вакуумных насосов в колонне создается глубокий вакуум для беспрепятственного прохождения электронов и защиты образца от разрушения.

Поток электронов образуется в пушке микроскопа, построенной по принципу трехэлектродной лампы (катод, анод, управляющий электрод). В результате термоэмиссии с разогретого V-образного вольфрамового катода высвобождаются электроны, которые разгоняются до высоких энергий в электрическом поле с разностью потенциалов от нескольких десятков до нескольких сотен киловольт. Через отверстие в аноде поток электронов устремляется в просвет электромагнитных линз.

Наряду с вольфрамовыми термоэмиссионными катодами в электронном микроскопе применяют стержневые и автоэмиссионные катоды, обеспечивающие значительно большую плотность пучка электронов. Однако для их работы необходим вакуум не ниже 10^-7 мм рт. ст., что создает дополнительные конструктивные и эксплуатационные трудности.

Другой основной элемент конструкции колонны микроскопа - электромагнитная линза, представляющая собой катушку с большим числом витков тонкого медного провода, помещенную в панцирь из мягкого железа. При прохождении через обмотку линзы электрического тока в ней образуется электромагнитное поле, силовые линии которого концентрируются во внутреннем кольцевом разрыве панциря. Для усиления магнитного поля в область разрыва помещен полюсный наконечник, позволяющий получать мощное, симметричное поле при минимальном токе в обмотке линзы. Недостатком электромагнитных линз являются различные аберрации, влияющие на разрешающую способность микроскопа. Наибольшее значение имеет астигматизм, вызванный асимметрией магнитного поля линзы. Для его устранения применяют механические и электрические стигматоры.

Задача сдвоенных конденсорных линз, как и конденсора светового микроскопа, состоит в изменении освещенности объекта за счет изменения плотности потока электронов. Диафрагма конденсорной линзы диаметром 40-80 мкм выбирает центральную, наиболее однородную часть мучка электронов. Объективная линза - самая короткофокусная линза с мощным магнитным полем. Ее задача состоит в фокусировании и первичном увеличении угла движения электронов, прошедших через объект. От качества изготовления и однородности материала полюсного наконечника объективной линзы во многом зависит разрешающая способность микроскопа. В промежуточной и проекционной линзах происходит дальнейшее увеличение угла движения электронов.

Особые требования предъявляются к качеству изготовления предметного столика и объектодержателя, так как они должны не только перемещать и наклонять образец в заданных направлениях при большом увеличении, но и при необходимости подвергать его растяжению, нагреву или охлаждению.

Довольно сложным электронно-механическим устройством является фоторегистрирующая часть микроскопа, которая позволяет осуществлять автоматическую экспозицию, замену отснятого фотоматериала, производить на нем запись необходимых режимов микроскопирования.

В отличие от светового микроскопа объект исследования в просвечивающем электронном микроскопе крепится на тонких сетках, изготовленных из немагнитного материала (медь, палладий, платина, золото). На сетки крепится пленка-подложка из коллодия, формвара или углерода толщиной несколько десятков нанометров, затем наносится материал, подвергаемый микроскопическому исследованию. Взаимодействие падающих электронов с атомами образца приводит к изменению направления их движения, отклонению на незначительные углы, отражению или полному поглощению. В формировании изображения на люминесцентном экране или фотоматериале принимают участие только те электроны, которые были отклонены веществом образца на незначительные углы и смогли пройти через апертурную диафрагму объективной линзы. Контрастность изображения зависит от наличия в образце тяжелых атомов, сильно влияющих на направление движения электронов. Для усиления контрастности биологических объектов, построенных в основном из легких элементов, применяют различные методы контрастирования (см. Электронная микроскопия).

В просвечивающем электронном микроскопе предусмотрена возможность получать темнопольное изображение образца при освещении его наклонным пучком электронов. В этом случае через апертурную диафрагму проходят рассеянные образцом электроны. Темно-польная микроскопия увеличивает контрастность изображения при высоком разрешении деталей образца. В просвечивающем электронном микроскопе предусмотрен также режим микродифракции минимальных кристаллов. Переход от светлопольного к темнопольному режиму и микродифракции не требует значительных изменений в схеме микроскопа.

В сканирующем электронном микроскопе поток электронов формируется высоковольтной пушкой. С помощью сдвоенных конденсорных линз получают тонкий пучок электронов (электронный зонд). Посредством отклоняющих катушек электронный зонд разворачивается на поверхности образца, вызывая излучение. Система сканирования в сканирующем электронном микроскопе напоминает систему, с помощью которой получают телевизионное изображение. Взаимодействие электронного луча с образцом приводит к появлению рассеянных электронов, потерявших часть энергии при взаимодействии с атомами образца. Для построения объемного изображения в сканирующем электронном микроскопе электроны собираются специальным детектором, усиливаются и подаются на генератор развертки. Количество отраженных и вторичных электронов в каждой отдельной точке зависит от рельефа и химического состава образца, соответственно меняется яркость и контрастность изображения объекта на кинескопе. Разрешающая способность сканирующего электронного микроскопа достигает 3 нм, увеличение - 300 000. Глубокий вакуум в колонне сканирующего электронного микроскопа предусматривает обязательное обезвоживание биологических образцов с помощью органических растворителей либо их лиофилизацию из замороженного состояния.

Комбинированный электронный микроскоп может быть создан на базе просвечивающего или сканирующего электронного микроскопа. Пользуясь комбинированным электронным микроскопом, можно одновременно изучать образец в просвечивающем и сканирующем режимах. В комбинированном электронном микроскопе, как и в сканирующем, предусмотрена возможность для рентгеноструктурного, энергодисперсионного анализа химического состава вещества объекта, а также для оптико-структурного машинного анализа изображений.

Для увеличения эффективности использования всех видов электронных микроскопов созданы системы, позволяющие переводить электронно-микроскопическое изображение в цифровую форму с последующей обработкой этой информации на ЭВМ Оптико-структурный машинный анализ позволяет производить статистический анализ изображения непосредственно с микроскопа, минуя традиционный метод «негатив-отпечаток».

Библиогр.: Стоянова И. Г. и Анаскнн И. Ф. Физические основы методов просвечивающей электронной микроскопии, М., 1972; Суворов А. Л. Микроскопия в науке и технике, М., 1981; Финеан Дж. Биологические ультраструктуры, пер. с англ., М., 1970; Шиммель Г. Методика электронной микроскопии, пер. с нем.. М., 1972. См. также библиогр. к ст. Электронная микроскопия.

Для получения изображения в электронном микроскопе используются специальные магнитные линзы , управляющие движением электронов в колонне прибора при помощи магнитного поля .

Энциклопедичный YouTube

    1 / 4

    ✪ Самый мощный электронный микроскоп в мире.

    ✪ Миры под микроскопом

    ✪ Наномир. Сканирующий туннельный микроскоп.

    ✪ 89.Из истории великих научных открытий: Эрнст Руска и электронный микроскоп

    Субтитры

История развития электронного микроскопа

В 1931 году Р. Руденберг получил патент на просвечивающий электронный микроскоп , а в 1932 году М. Кнолль и Э. Руска построили первый прототип современного прибора. Эта работа Э. Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру . Использование просвечивающего электронного микроскопа для научных исследований было начато в конце 1930-х годов и тогда же появился первый коммерческий прибор, построенный фирмой Siemens .

В конце 1930-х - начале 1940-х годов появились первые растровые электронные микроскопы, формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-х годах, когда они достигли значительного технического совершенства.

Значительным скачком (в 1970-х годах) в развитии было использование вместо термоэмиссионных катодов - катодов Шоттки и катодов с холодной автоэмиссией, однако их применение требует значительно большего вакуума.

В конце 1990-х - начале 2000-х компьютеризация и использование ПЗС-детекторов значительно упростили получение изображений в цифровом виде.

В последнее десятилетие в современных передовых просвечивающих электронных микроскопах используются корректоры сферических и хроматических аберраций, вносящих основные искажения в получаемое изображение. Однако их применение может значительно усложнять использование прибора.

Виды приборов

Просвечивающая электронная микроскопия

В просвечивающем электронном микроскопе используется высокоэнергетический электронный пучок для формирования изображения. Электронный пучок создается посредством катода (вольфрамового, LaB 6 , Шоттки или холодной полевой эмиссии). Полученный электронный пучок ускоряется обычно до 80-200 кэВ (используются различные напряжения от 20 кВ до 1 МВ), фокусируется системой магнитных линз (иногда электростатических линз), проходит через образец так, что часть электронов рассеивается на образце, а часть - нет. Таким образом, прошедший через образец электронный пучок несет информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на люминесцентном экране (как правило, из сульфида цинка), фотопластинке или ПЗС-камере.

Разрешение ПЭМ лимитируется в основном сферической аберрацией . Некоторые современные ПЭМ имеют корректоры сферической аберрации .

Основными недостатками ПЭМ являются необходимость в очень тонком образце (порядка 100 нм) и неустойчивость(разложение) образцов под пучком.

Просвечивающая растровая(сканирующая) электронная микроскопия (ПРЭМ)

Один из типов просвечивающей электронной микроскопии (ПЭМ), однако есть приборы работающие исключительно в режиме ПРЭМ. Пучок электронов пропускается через относительно тонкий образец, но, в отличие от обычной просвечивающей электронной микроскопии, электронный пучок фокусируется в точку, которая перемещается по образцу по растру.

Растровая (сканирующая) электронная микроскопия

В основе лежит телевизионный принцип развертки тонкого пучка электронов по поверхности образца.

Окрашивание

В своих наиболее распространенных конфигурациях, электронные микроскопы дают изображения с отдельным значением яркости на каждый пиксель, с результатами, как правило, изображенными в оттенки серого . Однако, часто эти изображения затем раскрашены посредством использования программного обеспечения, или просто ручным редактированием с помощью графического редактора. Это делается обычно для эстетического эффекта или для уточнения структуры и, как правило, не добавляет информацию об образце.

В некоторых конфигурациях о свойствах образца можно собрать больше информации на каждый пиксель, благодаря использованию нескольких детекторов. В СЭМ, атрибуты топографии и рельефа материала могут быть получены с помощью пары электронных детекторов отражения и такие атрибуты могут быть наложены в единое цветное изображение, с присвоением разных первичных цветов для каждого атрибута. По аналогии, сочетаниям отраженного и вторичного электронного сигнала могут быть присвоены различные цвета и наложены на один цветной микрограф, одновременно показывающий свойства образца.

Некоторые типы детекторов, используемых в СЭМ, имеют аналитические возможности, и могут обеспечить несколько элементов данных на каждом пикселе. Примерами являются детекторы Энергодисперсионная рентгеновская спектроскопия , используемые в элементном анализе, и системы Катодолюминесцентных микроскопов, которые анализируют интенсивность и спектр электронно-стимулированной Люминесценция в (например) геологических образцах. В системах СЭМ использование этих детекторов является общим для цветового кода сигналов и накладывают их в единое цветное изображение, так что различия в распределении различных компонентов образца можно ясно видеть и сравнивать. Дополнительно, стандарт вторичных электронных изображений может быть объединен с одним или более композиционными каналами, так что можно сравнить структуру и состав образца. Такие изображения могут быть сделаны с сохранением полной целостности исходного сигнала, который не изменяется в любом случае.

Недостатки

Электронные микроскопы дороги в производстве и обслуживании, но общая и эксплуатационная стоимость конфокального оптического микроскопа сравнима с базовыми электронными микроскопами. Микроскопы, направленные на достижение высоких разрешений, должны быть размещены в устойчивых зданиях (иногда под землей) и без внешних электромагнитных полей. Образцы в основном должны рассматриваться в вакууме, так как молекулы, составляющие воздух, будут рассеивать электроны. Одним из исключений является окружающая среда сканирующего электронного микроскопа, которая позволяет гидратированным образцам быть рассмотренным в низком давлении (до 2,7 кПа) и / или влажной среде. Сканирующие электронные микроскопы, работающие в обычном высоковакуумном режиме, как правило, изображают проводящий образец; Поэтому непроводящие материалы требуют проводящее покрытие (золото / палладий, сплав углерода, осмий, и т.д.). Режим низкого напряжения современных микроскопов делает возможным наблюдение непроводящих образцов без покрытия. Непроводящие материалы могут быть изображены также переменным давлением (или окружающей средой) сканирующего электронного микроскопа.

Сферы применения

Полупроводники и хранение данных

  • Редактирование схем
  • Метрология 3D
  • Анализ дефектов
  • Анализ неисправностей

Биология и биологические науки

  • Локализация белков
  • Клеточная томография
  • Крио-электронная микроскопия
  • Биологическое производство и мониторинг загрузки вирусов
  • Анализ частиц
  • Фармацевтический контроль качества
  • 3D изображения тканей
  • Стеклование

Научные исследования

  • Квалификация материалов
  • Подготовка материалов и образцов
  • Создание нанопрототипов
  • Нанометрология
  • Тестирование и снятие характеристик устройств
  • Исследования микроструктуры металлов

Промышленность

  • Создание изображений высокого разрешения
  • Снятие микрохарактеристик 2D и 3D
  • Макрообразцы для нанометрической метрологии
  • Обнаружение и снятие параметров частиц
  • Динамические эксперименты с материалами
  • Подготовка образцов
  • Добыча и анализ полезных ископаемых
  • Химия /Нефтехимия