Соотношение неопределенностей гейзенберга. Принцип неопределенности гейзенберга и его значение в развитии естествознания

Материал из свободной русской энциклопедии «Традиция»


В квантовой механике принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) устанавливает, что существует ненулевой предел для произведения дисперсий сопряжённых пар физических величин, характеризующих состояние системы. Принцип неопределённости обнаруживается также в классической теории измерений физических величин.

Обычно принцип неопределённости иллюстрируется следующим образом. Рассмотрим ансамбль невзаимодействующих эквивалентных частиц, приготовленных в определённом состоянии, для каждой из которых измеряется либо координата q , либо импульс p . При этом результаты измерений будут случайными величинами, среднеквадратические отклонения которых от средних значений будут удовлетворять соотношению неопределённостей , где – . Поскольку любое измерение изменяет состояние каждой частицы, при одном измерении нельзя одновременно измерить значения и координаты и импульса. Для ансамбля частиц уменьшение дисперсии при измерении физической величины приводит к увеличению дисперсии сопряжённой физической величины. Считается, что принцип неопределённости связан не только с возможностями экспериментальной техники, но и показывает фундаментальное свойство природы.

Содержание

  • 1 Краткий обзор
  • 2 История
  • 3 Принцип неопределённости и эффект наблюдателя
    • 3.1 Микроскоп Гейзенберга
  • 4 Критика
    • 4.1 Щель в экране
    • 4.2 Коробка Эйнштейна
    • 4.3 Парадокс Эйнштейна - Подольского - Розена
    • 4.4 Критика Поппера
  • 5 Принцип неопределённости информационной энтропии
  • 6 Производные
    • 6.1 Физическая интерпретация
    • 6.2 Матричная механика
    • 6.3 Волновая механика
    • 6.4 Симплектическая геометрия
  • 7 Соотношение Робертсона - Шрёдингера
    • 7.1 Другие принципы неопределённости
  • 8 Энергия-время в принципе неопределённости
  • 9 Теоремы неопределённости в гармоническом анализе
    • 9.1 Теорема Бенедика
    • 9.2 Принцип неопределённости Харди
  • 10 Бесконечная вложенность материи
  • 11 Выражение конечного доступного количества информации Фишера
  • 12 Научный юмор
  • 13 Принцип неопределённости в популярной культуре
  • 14 Ссылки
  • 15 Литература
  • 16 Внешние ссылки

Краткий обзор

В квантовой механике соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Кроме этого принимается, что для частиц по крайней мере отчасти справедлив корпускулярно-волновой дуализм. В таком приближении положение частицы определяется местом концентрации соответствующей частице волны, импульс частицы связывается с длиной волны, и возникает наглядная аналогия между отношениями неопределённости и свойствами волн или сигналов. Положение является неопределённым настолько, насколько волна распределена в пространстве, а неопределённость импульса выводится из неопределённости длины волны при её измерении в разные моменты времени. Если волна находится в точечноподобной области, её положение определено с хорошей точностью, но у такой волны в виде короткого волнового цуга отсутствует определённая длина волны, характерная для бесконечной монохроматической волны.

В качестве волны, соответствующей частице, можно взять волновую функцию. В многомировой интерпретации квантовой механики считается, что при каждом измерении положения частицы происходит декогеренция . В отличие от этого в копенгагенской интерпретации квантовой механики говорят, что при каждом измерении положения частицы как будто бы происходит коллапс волновой функции до малой области, где находится частица, и за пределами этой области волновая функция близка к нулю (это описание полагается возможным приёмом для согласования поведения волновой функции как характеристики частицы, так как волновая функция лишь косвенно связана с реальными физическими величинами). Такая трактовка вытекает из того, что квадрат волновой функции показывает вероятность нахождения частицы в пространстве. Для малой области импульс частицы в каждом измерении не может быть измерен точно вследствие самой процедуры измерений импульса. При измерении положения частица будет чаще обнаруживаться там, где имеется максимум волновой функции, и в серии одинаковых измерений появится наиболее вероятное положение и определится среднеквадратическое отклонение от него:

Точно также в серии одинаковых измерений осуществляется распределение вероятностей, определяются статистическая дисперсия и среднеквадратическое отклонение от среднего импульса частицы :

Произведение данных величин связано соотношением неопределённости:

где – постоянная Дирака.

В некоторых случаях «неопределённость» переменной определяется как наименьшая ширина диапазона, который содержит 50 % значений, что в случае нормального распределения переменных приводит для произведения неопределённостей к большей нижней границе, становящейся равной . Согласно соотношению неопределённостей, состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x – нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» но не с произвольно высокой точностью.

Отношения неопределённости накладывают ограничения на теоретический предел точности любых измерений. Они справедливы для так называемых идеальных измерений, иногда называемых измерениями Джона фон Неймана. Они тем более справедливы для неидеальных измерений или измерений согласно Л.Д. Ландау. В повседневной жизни мы обычно не наблюдаем неопределённость потому, что значение чрезвычайно мало.

Как правило, любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. Принцип неопределённости в виде, первоначально предложенном Гейзенбергом, верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим. Примером является частица с определённым значением энергии, находящаяся в коробке. Такая частица является системой, которая не характеризуется ни определённым «положением» (какое-либо определённое значение расстояния от потенциальной стенки), ни определённым значением импульса (включая его направление).

Принцип неопределённости выполняется не только в опытах для множества частиц в одинаковых начальных состояниях, когда учитываются среднеквадратичные отклонения от средних значений для пары сопряжённых физических величин, измеряемых отдельно друг от друга, но и в каждых разовых измерениях, когда можно оценить значения и разброс одновременно обеих физических величин. Хотя принцип неопределённости связан с эффектом наблюдателя , он не исчерпывается им, поскольку связан ещё и со свойствами наблюдаемых квантовых объектов и их взаимодействиями между собой и с приборами.

История

Основная статья : Введение в квантовую механику

Вернер Гейзенберг сформулировал принцип неопределённости в институте Нильса Бора в Копенгагене во время работы над математическими основами квантовой механики.

В 1925 г. следуя работам Хендрика Крамерса , Гейзенберг развил матричную механику, заменившую существовавшую ранее на основе постулатов Бора версию квантовой механики. Он предположил, что квантовое движение отличается от классического, так что у электронов в атоме нет точно определённых орбит. Следовательно, для электрона уже нельзя точно сказать, где он находится в данное время и как быстро движется. Свойством матриц Гейзенберга для положения и импульса является то, что они не коммутируют между собой:

В марте 1926 г. Гейзенберг нашёл, что некоммутативность приводит к принципу неопределённости, ставшему основой того, что позже назвали копенгагенской интерпретацией квантовой механики. Гейзенберг показал связь коммутатора операторов величин и боровского принципа дополнительности. Любые две переменные, которые не коммутируют между собой, не могут быть точно измерены одновременно, так как при увеличении точности измерения одной переменной падает точность измерения другой переменной.

В качестве примера можно рассмотреть дифракцию частицы, проходящей через узкую щель в экране и отклоняющейся после прохождения на некоторый угол. Чем уже щель, тем больше получается неопределённость в направлении импульса прошедшей частицы. По закону дифракции возможное угловое отклонение Δθ приблизительно равно λ / d , где d есть ширина щели, а λ – длина волны, соответствующая частице. Если использовать формулу для в виде λ = h / p , и обозначить d Δθ = Δx , то получается соотношение Гейзенберга:

В своей статье 1927 г. Гейзенберг представил данное соотношение как минимально необходимое возмущение в величине импульса частицы, возникающее в результате измерения положения частицы , но не дал точного определения величинам Δx и Δp . Вместо этого он сделал их оценки в ряде случаев. В своей лекции в Чикаго он уточнил свой принцип так:

(1)

В современном виде соотношение неопределённостей записал Кеннард (E. H. Kennard ) в 1927 г.:

(2)

где , и σ x , σ p являются среднеквадратическими (стандартными) отклонениями положения и импульса. Сам Гейзенберг доказал соотношение (2) только для специального случая гауссовских состояний. .

Принцип неопределённости и эффект наблюдателя

Один из вариантов принципа неопределённости можно сформулировать так:

Измерение координаты частицы необходимо изменяет её импульс, и наоборот .

Это делает принцип неопределённости особым, квантовым вариантом эффекта наблюдателя , причём в роли наблюдателя может выступать и автоматизированная система измерений, использующая как принцип прямой фиксации частиц, так и метод исключения (частицы, не попавшие в детектор, прошли другим доступным путём).

Такое объяснение может быть принято и было использовано Гейзенбергом и Бором, стоявшими на философской основе логического позитивизма. Согласно логике позитивизма, для исследователя истинная природа наблюдаемой физической системы определяется результатами наиболее точных экспериментов, достижимых в принципе и ограниченных лишь самой природой. В таком случае появление неизбежных неточностей при проведении измерений становится следствием не только свойств реально используемых приборов, но и самой физической системы в целом, включая объект и систему измерения.

В настоящее время логический позитивизм не является общепринятой концепцией, поэтому объяснение принципа неопределённости на основе эффекта наблюдателя становится неполным для тех, кто придерживается другой философского подхода. Некоторые полагают, что возникающее при измерении координаты частицы значительное изменение её импульса является необходимым свойством не частицы, а лишь измерительного процесса. На самом деле частица скрытым от наблюдателя образом обладает определённым местоположением и импульсом в каждый момент времени, но их значения не определяются точно вследствие использования слишком грубых инструментов (теория скрытых параметров). Для иллюстрации можно привести пример: необходимо найти местоположение и импульс движущегося биллиардного шара, используя другой биллиардный шар. В серии экспериментов, в которых оба шара направляются приблизительно одинаково и сталкиваются, можно найти углы рассеяния шаров, их импульсы, и затем определить точки их встречи. Вследствие начальных неточностей каждое столкновение является уникальным, появляется разброс в местоположении и скоростях шаров, что для серии столкновений приводит к соответствующему соотношению неопределённости. Однако при этом мы точно знаем, что в каждом отдельном измерении шары движутся, обладая вполне конкретными импульсом в каждый момент времени. Данное знание в свою очередь возникает оттого, что за шарами можно следить с помощью отражённого света, который практически не влияет на движение массивных шаров.

Описанная ситуация иллюстрирует возникновение принципа неопределённости и зависимость результатов измерений от процедуры измерений и свойств измерительных приборов. Но в реальных экспериментах до сих пор не обнаружено способа одновременного измерения параметров элементарных частиц внешними приборами, не нарушая существенно их начального состояния. Поэтому идея о скрытых от наблюдателя параметрах частиц в стандартной квантовой механике не пользуется успехом и в ней обычно просто утверждается, что не существует состояний, в которых одновременно можно измерить координату и импульс частицы.

Существуют однако ситуации, в которых вероятно могут быть определены скрытые параметры частиц. Речь идёт о двух (или более) связанных частицах в так называемом сцепленном состоянии. Если эти частицы оказываются на достаточно большом расстоянии друг от друга и не могут влиять друг на друга, измерение параметров одной частицы даёт полезную информацию о состоянии другой частицы.

Допустим, при распаде позитрония излучаются два фотона в противоположенных направлениях. Поместим два детектора таким образом, что первый может измерить положение одного фотона, а второй детектор – импульс другого фотона. Произведя одновременные измерения, можно с помощью закона сохранения импульса достаточно точно определить как импульс и направление первого фотона, так и его местоположение при попадании в первый детектор. Изменение процедуры измерения в данном случае позволяет избежать необходимости обязательного использования принципа неопределённости как ограничительного средства при вычислении погрешностей измерения. Описанная ситуация не отменяет принцип неопределённости как таковой, поскольку координата и импульс одновременно измеряются не у одной частицы локальным образом, а у двух частиц на расстоянии друг от друга.

Микроскоп Гейзенберга

В качестве одного из примеров, иллюстрировавших принцип неопределённости, Гейзенберг приводил воображаемый микроскоп как измерительное устройство. С его помощью экспериментатор измеряет положение и импульс электрона, который рассеивает падающий на него фотон, обнаруживая тем самым своё присутствие.

Если фотон имеет малую длину волны и следовательно большой импульс, положение электрона в принципе может быть измерено достаточно точно. Но при этом фотон рассеивается случайным образом, передавая электрону достаточно большую и неопределённую долю своего импульса. Если же у фотона большая длина волны и малый импульс, он мало изменяет импульс электрона, но рассеяние будет определять положение электрона очень неточно. В результате произведение неопределённостей в координате и импульсе остаётся не меньшим, чем постоянная Планка, с точностью до числового сомножителя порядка единицы. Гейзенберг не сформулировал точное математическое выражение для принципа неопределённости, а использовал принцип как эвристическое количественное соотношение.

Критика

Копенгагенская интерпретация квантовой механики и принцип неопределенности Гейзенберга оказались двойной мишенью для тех, кто верил в реализм и детерминизм. В копенгагенской интерпретации квантовой механики не содержится фундаментальной реальности, описывающей квантовое состояние и предписывающей способ вычисления экспериментальных результатов. В ней заранее не известно, что система находится в фундаментальном состоянии таком, что при измерениях появится точно заданный результат. Физическая вселенная существует не в детерминистичной форме, а скорее как набор вероятностей, или возможностей. Например, картина (распределение вероятности), произведённая миллионами фотонов, дифрагирующими через щель, может быть вычислена при помощи квантовой механики, но точный путь каждого фотона не может быть предсказан никаким известным методом. Копенгагенская интерпретация считает, что это не может быть предсказано вообще никаким методом.

Именно эту интерпретацию Эйнштейн подвергал сомнению, когда писал Максу Борну: «я уверен, что Бог не бросает кости» (Die Theorie liefert viel . Aber ich bin überzeugt , dass der Alte nicht würfelt ) . Нильс Бор, который был одним из авторов Копенгагенской интерпретации, ответил: «Эйнштейн, не говорите Богу, что делать».

Альберт Эйнштейн считал, что случайность появляется как отражение нашего незнания фундаментальных свойств реальности, тогда как Бор верил, что распределение вероятностей является фундаментальным и неповторимым, зависящим от вида измерений. Дебаты Эйнштейна и Бора в отношении принципа неопределённости длились не один год.

Щель в экране

Первый мысленный эксперимент Эйнштейна по проверке принципа неопределённости был следующим:

Рассмотрим частицу, проходящую через щель в экране шириной d. Щель приводит к неопределённости импульса частицы порядка h/d, когда частица проходит через экран. Но импульс частицы с достаточной точностью можно определить по отдаче экрана с помощью закона сохранения импульса.

Ответ Бора был таков: так как экран подчиняется законам квантовой механики, то для измерения отдачи с точностью ΔP импульс экрана должен быть известен с такой точностью до пролёта частицы. Это приводит к неопределённости положения экрана и щели, равной h / ΔP , и если импульс экрана известен достаточно точно для измерения отдачи, положение щели оказывается определённым с точностью, не позволяющей точного измерения положения частицы.

Подобный анализ с частицами, испытывающими дифракцию на нескольких щелях, имеется у Р. Фейнмана.

Коробка Эйнштейна

Другой мысленный эксперимент Эйнштейна был задуман для проверки принципа неопределённости в отношении таких сопряжённых переменных, как время и энергия. Если в эксперименте со щелью в экране частицы двигались в заданном пространстве, то во втором случае они двигаются в течение заданного времени.

Рассмотрим коробку, наполненную световым излучением в результате радиоактивного распада. В коробке имеется затвор, открывающий её на точно известное малое время, в течение которого часть излучения покидает коробку. Для измерения унесённой с излучением энергии можно взвесить коробку после излучения, сравнить с начальным весом и применить принцип . Если коробка установлена на весах, то измерения сразу должны показать неточность принципа неопределённости.

Через день размышлений Бор определил, что если энергия самой коробки известна точно в начальный момент, то время открытия затвора не может быть известно точно. Кроме этого, весы и коробка за счёт изменения веса при излучении могут менять своё положение в гравитационном поле. Это приводит к изменению скорости течения времени за счёт движения часов и за счёт влияния гравитации на ход часов, и к дополнительной неточности времени срабатывания затвора.

Парадокс Эйнштейна - Подольского - Розена

В третий раз боровская трактовка принципа неопределённости подверглась сомнению в 1935 г., когда Альберт Эйнштейн, Борис Подольский и Натан Розен (смотри Парадокс Эйнштейна - Подольского - Розена) опубликовали свой анализ состояний удалённых на большие расстояния сцепленных частиц. Согласно Эйнштейну, измерение физической величины одной частицы в квантовой механике должно приводить к изменению вероятности распределения другой частицы, причём со скоростью, которая может превышать даже скорость света. Обдумывая это, Бор пришёл к той мысли, что неопределённость в принципе неопределённости не возникает от подобного прямого измерения.

Сам же Эйнштейн полагал, что полное описание реальности должно включать предсказание результатов экспериментов на основе "локально меняющихся детерминированных величин", приводя к увеличению информации по сравнению с той, которая ограничивается принципом неопределённости.

В 1964 г. Джон Белл показал, что предположение Эйнштейна о скрытых параметрах может быть проверено, поскольку оно приводит к определённым неравенствам между вероятностями в различных экспериментах. К настоящему времени какого-либо надёжного подтверждения существования скрытых параметров на основе неравенств Белла не получено.

Имеется также точка зрения, что на результаты экспериментов могут влиять нелокальные скрытые параметры , в частности, её придерживался Д. Бом. Здесь квантовая теория может тесно соприкасаться с другими физическими концепциями. Например, нелокальные скрытые параметры можно мыслить случайным набором данных, проявляющимся в экспериментах. Если предположить, что размер видимой вселенной ограничивает этот набор и связи между ними, то квантовый компьютер согласно Г. Хоофту вероятно будет допускать ошибки, когда будет оперировать с числами, превышающими 10000 единиц.

Критика Поппера

К.Р. Поппер критиковал принцип неопределённости в том виде, который был дан Гейзенбергом – что измерение местоположения частицы всегда влияет на результат измерения импульса, указывая, что при прохождении частицей с определённым импульсом узкой щели в отражённой волне имеется некоторая амплитуда вероятности существования импульса, равного импульсу до рассеяния. Это значит, что в ряде событий частица пройдёт щель без изменения импульса. В таком случае соотношение неопределённостей следует применять не для индивидуальных событий или опытов, а для экспериментов с множеством одинаковых частиц с одинаковыми начальными условиями, то есть для квантовых ансамблей. Критика подобного типа применима ко всем вероятностным теориям, а не только к квантовой механике, так как вероятностные утверждения требуют для своей поверки множества измерений.

С точки зрения копенгагенской интерпретации квантовой механики, приписывание частице определённого импульса до измерения эквивалентно существованию скрытого параметра. Частица должна описываться не этим импульсом, а волновой функцией, которая меняется при прохождении щели. Отсюда возникает неопределённость импульса, соответствующая принципу неопределённости.

Принцип неопределённости информационной энтропии

При формулировке многомировой интерпретации квантовой механики в 1957 г. Хью Эверетт пришёл к более строгой форме принципа неопределённости. . Если квантовые состояния имеют волновую функцию вида:

то у них будет увеличено стандартное отклонение в координате из-за суперпозиции некоторого числа взаимодействий. Будет увеличена и неопределённость в импульсе. Для уточнения неравенства в соотношении неопределённостей используется информация Шеннона для распределения величин, измеряемая числом бит, необходимых для описания случайной величины при конкретном распределении вероятностей:

Величина I интерпретируется как число бит информации, получаемой наблюдателем в момент, когда величина x достигает точности ε , равной I x + log 2 (ε) . Вторая часть есть число бит после десятичной точки, а первая даёт логарифмическое значение распределения. Для однородного распределения ширины Δx информационное содержание равно log 2 Δx . Эта величина может быть отрицательна, означая, что распределение уже одной единицы, и малые биты после десятичной точки не дают информации из-за неопределённости.

Если взять логарифм соотношения неопределённостей в так называемых естественных единицах:

то в таком виде нижняя граница равна нулю.

Эверетт и Хиршман предположили, что для всех квантовых состояний:

Это было доказано Бекнером в 1975 г. .

Производные

Когда линейные операторы A и B действуют на функцию ψ(x ) , они не всегда коммутируют. Пусть например оператор B есть умножение на x, а оператор A есть производная по x. Тогда имеет место равенство:

которое на операторном языке означает:

Это выражение очень близко к каноническому коммутатору квантовой механики, в котором оператор положения есть умножение волновой функции на x, а оператор импульса включает производную и умножение на . Это даёт:

Этот ненулевой коммутатор приводит к соотношению неопределённости.

Для любых двух операторов A и B:

что соответствует неравенству Коши - Буняковского для внутреннего произведения двух векторов и . Величина ожидания произведения AB превышает амплитуду мнимой части:

Для эрмитовых операторов это даёт соотношение Робертсона - Шрёдингера :

и принцип неопределённости как частный случай.

Физическая интерпретация

При переходе от операторов величин к неопределённостям можно записать:

где

есть среднее переменной X в состоянии ψ ,

есть среднеквадратическое отклонение переменной X в состоянии ψ.

После замены для A и для B в общем операторном неравенстве коммутатор приобретает вид:

Нормы и являются в квантовой механике стандартными отклонениями для A и B. Для координаты и импульса норма коммутатора равна .

Матричная механика

В матричной механике коммутатор матриц X и P равен не нулю, а величине , умноженной на единичную матрицу.

Коммутатор двух матриц не меняется, когда обе матрицы изменяются за счёт сдвига на постоянные матрицы x и p :

Для каждого квантового состояния ψ можно определить число x

как ожидаемое значение координаты, и

как ожидаемое значение импульса. Величины и будут ненулевыми в той степени, в которой являются неопределёнными положение и импульс, так что X и P отличаются от средних значений. Ожидаемое значение коммутатора

может быть ненулевым, если отклонение в X в состоянии , умноженное на отклонение в P , достаточно большое.

Квадрат значения типичного матричного элемента как квадрат отклонения можно оценить путём суммирования квадратов состояний энергии :

Поэтому каноническое коммутационное соотношение получается умножением отклонений в каждом состоянии, давая значение порядка :

Эта эвристическая оценка может быть уточнена с помощью неравенства Коши - Буняковского (смотри выше). Внутреннее произведение двух векторов в скобках:

ограничено произведением длин векторов:

Поэтому для каждого состояния будет:

действительная часть матрицы M есть , поэтому действительная часть произведения двух эрмитовых матриц равна:

Для мнимой части имеем:

Амплитуда больше, чем амплитуда её мнимой части:

Произведение неопределённостей ограничено снизу ожидаемым значением антикоммутатора , давая соответствующий член в соотношение неопределённостей. Этот член не важен для неопределённости положения и импульса, так как он имеет нулевое ожидаемое значение для гауссовского волнового пакета, как в основном состоянии гармонического осциллятора. В то же время член от антикоммутатора полезен для ограничения неопределённостей спиновых операторов.

Волновая механика

В уравнении Шрёдингера квантовомеханическая волновая функция содержит информацию как о положении, так и об импульсе частицы. Наиболее вероятным положением частицы является то, где концентрация волны наибольшая, а основная длина волны задаёт импульс частицы.

Длина волны локализованной волны определяется неточно. Если волна находится в объёме размером L и длина волны приблизительно равна λ , число циклов волны в этой области будет порядка L / λ . То, что число циклов известно с точностью до одного цикла, можно записать так:

Это соответствует хорошо известному результату при обработке сигналов - чем короче промежуток времени, тем менее точно определена частота. Аналогично в преобразовании Фурье, чем уже пик функции, тем шире её Фурье образ.

Если умножить равенство на h , и положить ΔP = h Δ (1 / λ) , ΔX = L , то будет:

Принцип неопределённости может быть представлен как теорема в преобразованиях Фурье: произведение стандартного отклонения квадрата абсолютного значения функции на стандартное отклонение квадрата абсолютного значения её Фурье образа не меньше, чем 1/(16π 2).

Типичным примером является (ненормализованная) гауссовская волновая функция:

Ожидаемое значение X равно нулю вследствие симметрии, поэтому вариация находится усреднением X 2 по всем положениям с весом ψ(x ) 2 и учётом нормировки:

С помощью преобразования Фурье можно перейти от ψ(x ) к волновой функции в k пространстве, где k есть волновое число и связано с импульсом соотношением де Бройля :

Последний интеграл не зависит от p, так как здесь непрерывное изменение переменных , исключающее такую зависимость, а путь интегрирования в комплексной плоскости не проходит через сингулярность. Поэтому с точностью до нормировки волновая функция снова гауссовская:

Ширина распределения k находится путём усреднения через интегрирование, как показано выше:

Тогда в данном примере

Симплектическая геометрия

В математических терминах сопряжённые переменные являются частью симплектического базиса, и принцип неопределённости соответствует симплектической форме в симплектическом пространстве.

Соотношение Робертсона - Шрёдингера

Возьмём любые два самосопряжённые эрмитовые операторы A и B , и систему в состоянии ψ. При измерении величин A и B проявится распределение вероятностей со стандартными отклонениями Δ ψ A и Δ ψ B . Тогда будет справедливо неравенство:

где [A ,B ] = AB - BA есть коммутатор A и B , {A ,B } = AB +BA есть антикоммутатор , и есть ожидаемое значение. Это неравенство называется соотношением Робертсона - Шрёдингера, включающее в себя принцип неопределённости как частный случай. Неравенство с одним коммутатором вывел в 1930 г. Говард Перси Робертсон (Howard Percy Robertson ), и несколько позже Эрвин Шрёдингер добавил член с антикоммутатором .

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ . В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Другие принципы неопределённости

Соотношение Робертсона - Шрёдингера приводит к соотношениям неопределённости для любых двух переменных, которые не коммутируют друг с другом:

  • Соотношение неопределённости между координатой и импульсом частицы:

  • между энергией и положением частицы в одномерном потенциале V(x):

  • между угловой координатой и моментом импульса частицы при малой угловой неопределённости:

  • между ортогональными компонентами полного момента импульса частицы:

где i , j , k различны и J i означает момент импульса вдоль оси x i .

  • между числом электронов в сверхпроводнике и фазой их упорядочивания в теории Гинзбурга-Ландау:

Существует также отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Энергия-время в принципе неопределённости

Энергия и время входят в соотношение неопределённостей, которое не вытекает напрямую из соотношения Робертсона - Шрёдингера.

Произведение энергии на время имеет ту же размерность, что и произведение импульса на координату, момент импульса и функция действия. Поэтому уже Бору было известно следующее соотношение:

здесь Δt есть время существования квантового состояния, а время как и пространственная координата задаёт эволюцию частицы в системе пространственно-временных координат.

Из соотношения следует, что состояние с малым временем жизни не может иметь определенного значения энергии – за это время энергия обязана измениться, тем более существенно, чем меньше время. Если энергия состояния пропорциональна частоте колебаний, то для высокой точности измерения энергии необходимо измерять частоту за такой период времени, который включает в себя достаточно много волновых циклов.

Например, в спектроскопии возбуждённые состояния имеют ограниченное время жизни. Средняя энергия испускаемых фотонов лежит вблизи теоретического значения энергии состояния, но распределение энергий имеет некоторую ширину, называемую естественная ширина линии . Чем быстрее распадается состояние, тем шире соответствующая ему ширина линии, что затрудняет точное измерение энергии. . Аналогично имеются трудности при определении массы покоя быстро распадающихся резонансов в физике элементарных частиц. Чем быстрее распадается частица, тем менее точно известна её масса-энергия.

В одной неточной формулировке принципа неопределённости утверждается, что для измерения энергии квантовой системы с точностью ΔE требуется время Δt > h / ΔE . Её неточность была показана Ахароновым (Yakir Aharonov ) и Д. Бомом в 1961 г. На самом деле время Δt есть время, когда система существует в отсутствие внешних возмущений, а не время измерения или воздействия измерительных приборов.

В 1936 г. Поль Дирак предложил точное определение и вывод энерго -временного соотношения неопределённости в релятивистской квантовой теории "событий". В этой формулировке частицы движутся в пространстве-времени и на каждой траектории имеют своё собственное внутреннее время. Многовременная формулировка квантовой механики математически эквивалентна стандартной формулировке, но более удобна для релятивистского обобщения. На её основе Синъитиро Томонага создал ковариантную теорию возмущений для квантовой электродинамики.

Более известную и используемую формулировку энерго -временного соотношения неопределённости дали в 1945 г. Л. И. Мандельштам и И . E. Тамм. Для квантовой системы в нестационарном состоянии наблюдаемая величина B представляется самосогласованным оператором , и справедлива формула:

где Δ ψ E есть стандартное отклонение оператора энергии в состоянии , Δ ψ B есть стандартное отклонение оператора и есть ожидаемая величина в этом состоянии. Второй множитель в левой части имеет размерность времени, и он отличается от времени, входящем в уравнение Шрёдингера. Этот множитель является временем жизни состояния по отношению к наблюдаемой B , по истечении которого ожидаемое значение изменяется заметно.

Теоремы неопределённости в гармоническом анализе

В гармоническом анализе принцип неопределённости подразумевает, что нельзя точно получить значения функции и её отображения Фурье; при этом выполняется следующее неравенство:

Имеются и другие соотношения между функцией ƒ и её отображением Фурье.

Теорема Бенедика

Эта теорема утверждает, что набор точек, где функция ƒ не равна нулю, и набор точек, где не равна нулю, не могут быть оба слишком малы. В частности, ƒ в L 2 (R ) и её отображение Фурье не могут поддерживаться одновременно (иметь один и тот же носитель функции) на покрытиях с ограниченной мерой Лебега. При обработке сигналов этот результат хорошо известен: функция не может одновременно быть ограниченной и во времени и в диапазоне частот.

Принцип неопределённости Харди

Математик G. H. Hardy в 1933 г. сформулировал следующий принцип: невозможно для функций ƒ и обоим быть "очень быстро возрастающими." Так, если ƒ определена в L 2 (R ), то:

кроме случая f = 0 . Здесь отображение Фурье равно , и если в интеграле заменить на для каждого a < 2π , то соответствующий интеграл будет ограниченным для ненулевой функции f 0 .

Бесконечная вложенность материи

В теории принцип неопределённости получает особое толкование. Согласно этой теории, всё множество существующих во Вселенной объектов можно расположить по уровням, в пределах которых размеры и массы принадлежащих им объектов различаются не так сильно, как между различными уровнями. При этом возникает . Оно выражается например в том, что массы и размеры тел при переходе от уровня к уровню вырастают в геометрической прогрессии и могут быть найдены с помощью соответствующих коэффициентов подобия. Существуют основные и промежуточные уровни материи. Если брать такие основные уровни материи, как уровень элементарных частиц и уровень звёзд, то в них можно найти подобные друг другу объекты – нуклоны и нейтронные звёзды. Электрон также имеет свой аналог на уровне звёзд – в виде дисков, открытых возле рентгеновских пульсаров, являющихся основными кандидатами в магнитары. . По известным свойствам элементарных частиц (масса, радиус, заряд, спин и т.д.) с помощью коэффициентов подобия можно определить соответствующие свойства подобных им объектов на уровне звёзд.

Кроме этого, в силу физические законы не меняют своей формы на разных уровнях материи. Это означает, что кроме подобия объектов и их свойств, существует подобие соответствующих явлений. Благодаря этому на каждом уровне материи можно рассматривать свой собственный принцип неопределённости. Характерной величиной кванта действия и момента импульса на уровне элементарных частиц является величина , то есть . Она непосредственно входит в принцип неопределённости. Для нейтронных звёзд характерной величиной кванта действия является ħ’ s = ħ ∙ Ф’ ∙ S’ ∙ Р’ = 5,5∙10 41 Дж∙с , где Ф’, S’, Р’ – коэффициенты подобия по массе, скоростям процессов и размерам соответственно. Следовательно, если производить измерения местоположения, импульса или других величин у отдельных нейтронных звёзд с помощью звёздных или ещё более массивных объектов, то при их взаимодействии произойдёт обмен импульсом и моментом импульса, с характерным значением звёздного кванта действия порядка ħ’ s . При этом измерение координаты будет влиять на точность измерения импульса и наоборот, приводя к принципу неопределённости.

Из изложенного следует, что сущность принципа неопределённости вытекает из самой процедуры измерений. Так, элементарные частицы не могут быть исследованы иначе, как с помощью самих элементарных частиц или их композитных состояний (в виде ядер, атомов, молекул и т.д.), которые неизбежно влияют на результаты измерений. Взаимодействие частиц друг с другом или с приборами в таком случае приводит к необходимости введения статистических методов в квантовую механику и лишь вероятностных предсказаний результатов любых опытов. Так как процедура измерений стирает часть информации, имеющейся у частиц до измерений, то прямой детерминации событий от каких-либо скрытых параметров, предполагаемой в теории скрытых параметров, не получается. Например, если направить одну частицу на другую в точно заданном направлении, то должно получиться вполне определённое рассеяние частиц друг на друге. Но здесь возникает проблема в том, что вначале нужно ещё каким-то способом направить частицу именно в данном заданном направлении. Как видно, детерминации событий мешает не только процедура измерений, но и процедура установки точных начальных состояний исследуемых частиц.

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера - Рао в классической теории измерений. В случае, когда измеряется положение частицы, среднеквадратичный импульс частицы входит в неравенство как информация Фишера . См. также полная физическая информация .

Научный юмор

Необычная природа принципа неопределённости Гейзенберга и его запоминающееся название, сделали его источником нескольких шуток. Говорят, что популярной надписью на стенах физического факультета университетских городков является: «Здесь, возможно, был Гейзенберг».

Однажды Вернера Гейзенберга останавливает на шоссе полицейский и спрашивает: «Вы знаете, как быстро Вы ехали, сэр?». На что физик отвечает: «Нет, но я точно знаю, где я!»

Принцип неопределённости в популярной культуре

Принцип неопределённости часто неправильно понимается или описывается в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет. Например, проекции импульса на оси c и y можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузной семечки пальцем. Эффект известен - нельзя предсказать, как быстро или куда семечка исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

Само наличие у частицы волновых свойств накладывает определенные ограничения на возможность корпускулярного описания ее поведения. Для классической частицы всегда можно указать ее точное положение и импульс. Для квантового объекта имеем иную ситуацию.

Представим цуг волн пространственной протяженностью - образ локализованного электрона, положение которого известно с точностью . Длину волны де Бройля для электрона можно определить, подсчитав число N пространственных периодов на отрезке :

Какова точность определения ? Ясно, что для слегка отличающейся длины волны мы получим примерно то же самое значение N. Неопределенность в длине волны ведет к неопределенности

в числе узлов, причем измерению доступны лишь . Так как

то отсюда немедленно следует знаменитое соотношение неопределенностей В. Гейзенберга для координат - импульсов (1927 г.):

Точности ради надо заметить, что, во-первых, величина в данном случае означает неопределенность проекции импульса на ось OX и, во-вторых, приведенное рассуждение имеет скорее качественный, нежели количественный характер, поскольку мы не дали строгой математической формулировки, что понимается под неопределенностью измерения. Обычно соотношение неопределенностей для координат-импульсов записывается в виде

Аналогичные соотношения справедливы для проекций радиуса-вектора и импульса частицы на две другие координатные оси:

Представим теперь, что мы стоим на месте и мимо проходит электронная волна. Наблюдая за ней в течение времени , хотим найти ее частоту n . Насчитав колебаний, определяем частоту с точностью

откуда имеем

или (с учетом соотношения )

Аналогично неравенству (3.12) соотношение неопределенностей Гейзенберга для энергии системы чаще используется в виде

Рис. 3.38. Ве́рнер Карл Ге́йзенберг (1901–1976)

Поговорим о физическом смысле этих соотношений. Может сложиться представление, что в них проявляется «несовершенство» макроскопических приборов. Но приборы совсем не виноваты: ограничения носят принципиальный, а не технический характер. Сам микрообъект не может быть в таком состоянии, когда определенные значения одновременно имеют какая-то из его координат и проекция импульса на ту же ось.

Смысл второго соотношения: если микрообъект живет конечное время, то его энергия не имеет точного значения, она как бы размыта. Естественная ширина спектральных липни - прямое следствие формул Гейзенберга. На стационарной орбите электрон живет неограниченно долго и энергия определена точно. В этом - физический смысл понятия стационарного состояния. Если неопределенность в энергии электрона превышает разность энергий соседних состояний

то нельзя точно сказать, на каком уровне находится электрон. Иными словами, на короткое время порядка

электрон может перескочить с уровня 1 на уровень 2 , не излучая фотона, и затем вернуться назад. Это - виртуальный процесс, который не наблюдается и, следовательно, не нарушает закона сохранения энергии.

Похожие соотношения существуют и для других пар так называемых канонически сопряженных динамических переменных. Так, при вращении частицы вокруг некоторой оси по орбите радиусом R неопределенность ее угловой координаты влечет за собой неопределенность ее положения на орбите . Из соотношений (3.12) следует, что неопределенность импульса частицы удовлетворяет неравенству

Учитывая связь момента импульса электрона L с его импульсом L = Rp, получаем , откуда следует еще одно соотношение неопределенностей

Некоторые следствия соотношений неопределенностей

    Отсутствие траекторий частиц. Для нерелятивистской частицы p = mv и

Для массивных объектов правая часть исчезающе мала, что позволяет одновременно измерить скорость и положение объекта (область справедливости классической механики). В атоме же Бора импульс электрона

и неопределенность положения оказывается порядка радиуса орбиты.

    Невозможность состояния покоя в точке минимума потенциальной энергии.

Например, для осциллятора (тело на пружине) энергию Е можно записать в виде

Основное состояние в классической механике это состояние покоя в положении равновесия:

Поэтому величина неопределенностей и имеет порядок самих значений импульса и координаты, откуда получаем

Минимум энергии достигается в точке

Вообще говоря, такие оценки не могут претендовать на точный ответ, хотя в данном случае (как и для атома водорода) он действительно точен. Мы получили так называемые нулевые колебания : квантовый осциллятор, в отличие от классического, не может оставаться в покое - это противоречило бы соотношению неопределенностей Гейзенберга. Точные расчеты показывают, что формулу Планка для уровней энергии осциллятора надо было бы писать в виде

где n = 0, 1, 2, 3, ... - колебательное квантовое число.

При решении задач на применение соотношения неопределенностей следует иметь в виду, что в основном состоянии в классической физике электрон покоится в точке, соответствующей минимуму потенциальной энергии. Соотношения неопределенностей не позволяют ему это делать в квантовой теории, так что электрон должен иметь некоторый разброс импульсов. Поэтому неопределенность импульса (его отклонение от классического значения 0 ) и сам импульс по порядку величины совпадают

Открытие Вернером Гейзенбергом принципов неопределенности, которое он сделал в 1927 году, стало одним из важнейших достижений науки, сыгравших фундаментальную роль в развитии квантовой механики, а затем и оказавшим влияние на развитие всего современного естествознания.

Традиционное исследование мироздания исходило из установки, что коль все материальные объекты, которые мы можем наблюдать, ведут себя неким определенным образом, то и все остальные, которые мы не можем познавать с помощью ощущений, тоже должны вести себя также. Если же происходит некое возмущение в этом поведении, то оно квалифицируется как парадокс и вызывает недоумение. Такой была реакция естествоиспытателей, когда они проникли в микромир и столкнулись с явлениями, не укладывающимися в традиционную модель миропонимания. Особенно ярко этот феномен проявился в области где рассматривались предметы несоизмеримые по величине с теми, с которыми ученые привыкли иметь дело до этого. Принцип по сути, дал ответ на вопрос, чем микромир отличается от мира привычного нам.

Ньютоновская физика практически игнорировала такое явление, как влияние инструмента познания на сам объект познания, путем воздействия на его В начале 1920-х годов Вернер Гейзенберг поднимает данную проблему и приходит к формуле, в которой описывается степень влияния метода измерения свойств объекта, на сам объект. В результате и был открыт принцип неопределенности Гейзенберга. Математическое отражение он получил в теории соотношения неопределенностей. Категория «неопределенность» в данной концепции обозначала то, что исследователь точно не знает местоположения исследуемой частицы. В своем практическом значении принципы неопределенности Гейзенберга утверждали, что чем точнее по характеристикам, используется прибор для измерения физических свойств предмета, тем будет достигнута меньшая неопределенность наших представлений об этих свойствах. Например, принцип неопределенности Гейзенберга при использовании в исследовании микромира позволял сделать выводы о «нулевой» неопределенности, когда воздействие инструмента на изучаемый объект была ничтожно мала.

В дальнейших исследованиях было установлено, что принцип неопределенности Гейзенберга связывает своим содержанием не только пространственные координаты и скорость. Здесь он просто более наглядно проявляется. На самом деле его влияние присутствует во всех частях системы, которую мы изучаем. Этот вывод позволяет сделать несколько замечаний в отношении действия принципа Гейзенберга. Во-первых, этот принцип предполагает, что установить одинаково точно пространственные параметры объектов невозможно. Во-вторых, это свойство - объективно и не зависит от человека, который проводит измерения.

Эти выводы стали мощным импульсом для развития теорий управления в самых разных областях человеческой деятельности, где главным как правило, выступает пресловутый «человеческий фактор». В этом проявилось общественная значимость открытия Гейзенберга.

Современные научные и околонаучные дискуссии относительно принципов неопределенности, высказывают предположение, что если мол, роль человека в познании микромира ограничена, и он не может активно влиять на нее, то не является ли это свидетельством того, что сознание человека связано неким образом с «Высшим разумом» (теория «Новой эры»). Данные выводы не представляется возможным признать серьезными потому, что в них изначально неверно трактуется сам принцип. По Гейзенбергу, главным в его открытии, является не факт присутствия человека, а именно факт влияния инструмента на предмет исследования.

Принципы Гейзенберга на сегодняшний день являются одним из самых употребляемых методологических инструментов, применяемых в различных областях знаний.

Принцип неопределённости

Принцип неопределённости Гейзенберга в квантовой механике - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределённостей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.


Краткий обзор

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана, так и для неидеальных измерений.
Согласно принципу неопределённостей у частицы не могут быть одновременно точно измерены положение и скорость (импульс). Принцип неопределённости уже в виде, первоначально предложенном Гейзенбергом, применим и в случае, когда не реализуется ни одна из двух крайних ситуаций (полностью определенный импульс и полностью неопределенная пространственная координата - или полностью неопределенный импульс и полностью определенная координата).
Пример: частица с определённым значением энергии, находящаяся в коробке с идеально отражающими стенками; она не характеризуется ни определённым значением импульса (учитывая его направление!), ни каким-либо определённым «положением» или пространственной координатой (волновая функция частицы делокализована на всё пространство коробки, то есть её координаты не имеют определенного значения, локализация частицы осуществлена не точнее размеров коробки).
Соотношения неопределённостей не ограничивают точность однократного измерения любой величины (для многомерных величин тут подразумевается в общем случае только одна компонента). Если её оператор коммутирует сам с собой в разные моменты времени, то не ограничена точность и многократного (или непрерывного) измерения одной величины. Например, соотношение неопределённостей для свободной частицы не препятствует точному измерению её импульса, но не позволяет точно измерить её координату (это ограничение называется стандартный квантовый предел для координаты).
Соотношение неопределенностей в квантовой механике в математическом смысле есть прямое следствие некоего свойства преобразования Фурье.
Существует точная количественная аналогия между соотношениями неопределённости Гейзенберга и свойствами волн или сигналов. Рассмотрим переменный во времени сигнал, например звуковую волну. Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может одновременно иметь и точное значение времени его фиксации, как его имеет очень короткий импульс, и точного значения частоты, как это имеет место для непрерывного (и в принципе бесконечно длительного) чистого тона (чистой синусоиды). Временное положение и частота волны математически полностью аналогичны координате и (квантово-механическому) импульсу частицы. Что совсем не удивительно, если вспомнить, что , то есть импульс в квантовой механике - это и есть пространственная частота вдоль соответствующей координаты.
В повседневной жизни мы обычно не наблюдаем квантовую неопределённость потому, что значение чрезвычайно мало, и поэтому соотношения неопределенностей накладывают такие слабые ограничения на погрешности измерения, которые заведомо незаметны на фоне реальных практических погрешностей наших приборов или органов чувств.


Определение

Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения координаты и среднеквадратического отклонения импульса, мы найдем что:


где - приведённая постоянная Планка.

Отметим, что это неравенство даёт несколько возможностей - состояние может быть таким, что может быть измерен с высокой точностью, но тогда будет известен только приблизительно, или наоборот может быть определён точно, в то время как - нет. Во всех же других состояниях и , и могут быть измерены с «разумной» (но не произвольно высокой) точностью.


Интерпретация квантовой механики

Альберту Эйнштейну принцип неопределённости не очень понравился, и он бросил вызов Нильсу Бору и Вернеру Гейзенбергу известным мысленным экспериментом: заполним коробку радиоактивным материалом, который испускает радиацию случайным образом. Коробка имеет открытый затвор, который немедленно после заполнения закрывается при помощи часов в определённый момент времени, позволяя уйти небольшому количеству радиации. Таким образом время уже точно известно. Мы все ещё хотим точно измерить сопряжённую переменную энергии. Эйнштейн предложил сделать это, взвешивая коробку до и после. Эквивалентность между массой и энергией по специальной теории относительности позволит точно определить, сколько энергии осталось в коробке. Бор возразил следующим образом: если энергия уйдет, тогда полегчавшая коробка сдвинется немного на весах. Это изменит положение часов. Таким образом часы отклоняются от нашей неподвижной системы отсчёта, и по специальной теории относительности, их измерение времени будет отличаться от нашего, приводя к некоторому неизбежному значению ошибки. Детальный анализ показывает, что неточность правильно даётся соотношением Гейзенберга.
В пределах широко, но не универсально принятой Копенгагенской интерпретации квантовой механики, принцип неопределённости принят на элементарном уровне. Физическая вселенная существует не в детерминистичной форме, а скорее как набор вероятностей, или возможностей. Например, картина (распределение вероятности) произведённая миллионами фотонов, дифрагирующими через щель может быть вычислена при помощи квантовой механики, но точный путь каждого фотона не может быть предсказан никаким известным методом. Копенгагенская интерпретация считает, что это не может быть предсказано вообще никаким методом.
Именно эту интерпретацию Эйнштейн подвергал сомнению, когда писал Максу Борну: «Бог не играет в кости». Нильс Бор, который был одним из авторов Копенгагенской интерпретации, ответил: «Эйнштейн, не говорите Богу, что делать».
Эйнштейн был убеждён, что эта интерпретация была ошибочной. Его рассуждение основывалось на том, что все уже известные распределения вероятности являлись результатом детерминированных событий. Распределение подбрасываемой монеты или катящейся кости может быть описано распределением вероятности (50 % орёл, 50 % решка) Но это не означает, что их физические движения непредсказуемы. Обычная механика может вычислить точно, как каждая монета приземлится, если силы, действующие на неё, будут известны, а орлы/решки будут все ещё распределяться случайно (при случайных начальных силах).
Эйнштейн предполагал, что существуют скрытые переменные в квантовой механике, которые лежат в основе наблюдаемых вероятностей.
Ни Эйнштейн, ни кто-либо ещё с тех пор не смог построить удовлетворительную теорию скрытых переменных, и неравенство Белла иллюстрирует некоторые очень тернистые пути в попытке сделать это. Хотя поведение индивидуальной частицы случайно, оно также скоррелировано с поведением других частиц. Поэтому, если принцип неопределённости - результат некоторого детерминированного процесса, то получается, что частицы на больших расстояниях должны немедленно передавать информацию друг другу, чтобы гарантировать корреляции в своём поведении.


Принцип неопределённости в популярной литературе

Принцип неопределённости часто неправильно понимается или приводится в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет (см. выше). Например, проекции импульса на оси и можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.
Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузного семечка пальцем. Эффект известен - нельзя предсказать, как быстро или куда семечко исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.
В некоторых научно-фантастических рассказах устройство для преодоления принципа неопределённости называют компенсатором Гейзенберга, наиболее известное используется на звездолёте «Энтерпрайз» из фантастического телесериала «Звёздный Путь» в телепортаторе. Однако, неизвестно, что означает «преодоление принципа неопределённости». На одной из пресс-конференций продюсера сериала Джина Родденберри спросили «Как работает компенсатор Гейзенберга?», на что он ответил «Спасибо, хорошо!»

Хотя этот принцип и выглядит довольно странным, по своей сути он чрезвычайно прост. В квантовой теории, где положение объекта характеризуется квадратом амплитуды, а величина его импульса - длиной волны соответствующей волновой функции, этот принцип есть не что иное, как просто факт, характерный для волн: волна, локализованная в пространстве, не может иметь одну длину волны. Недоумение вызывается тем, что, говоря о частице, мы мысленно представляем ее классический образ, а затем удивляемся, когда обнаруживаем, что квантовая частица ведет себя не так, как ее классическая предшественница.

Если настаивать на классическом описании поведения квантовой частицы (в частности, если пытаться приписать ей как положение в пространстве, так и импульс), то максимальные возможные точности одновременного определения ее положения и импульса окажутся связанными между собой с помощью удивительно простого соотношения, впервые предложенного Гейзенбергом и получившего название принципа неопределенности:

где - неточности, или неопределенности, значений импульса и положения частицы. Произведение неточностей импульса и положения

оказывается порядка величины постоянной Планка. В квантовой теории в отличие от классической невозможно одновременно локализовать квантовую частицу и приписать ей определенный импульс Поэтому такая частица не может обладать и траекторией в том же смысле, что классическая частица. Мы имеем в виду отнюдь не психологическую неопределенность. Эта неопределенность характеризует природу такого объекта, который не может одновременно обладать двумя свойствами-положением и импульсом; объекта, отдаленно напоминающего шторм в атмосфере: если он простирается на большие расстояния, то дуют слабые ветры; если же он сконцентрирован в небольшой области, то возникает ураган или тайфун.

Принцип неопределенности содержит в удивительно простой форме то, что было так трудно сформулировать, используя волну Шредингера. Если имеется волновая функция с заданной длиной волны или с заданным импульсом, то ее положение является полностью неопределенным, так как вероятности нахождения частицы в различных точках пространства равны между собой. С другой стороны, если частица полностью локализована, ее волновая функция должна состоять из суммы всех возможных периодических волн, так что ее длина волны или импульс оказываются абсолютно неопределенными. Точное соотношение между неопределенностями положения и импульса (которое получается непосредственно из волновой теории и не связано особым образом с квантовой механикой, так как оно характеризует природу любых волн - звуковых волн, волн на поверхности воды или волн, бегущих вдоль натянутой пружины) дается в простой форме принципом неопределенности Гейзенберга.

Вспомним рассмотренную ранее частицу, одномерное движение которой происходило между двумя стенками, расположенными на расстоянии друг от друга. Неопределенность положения такой частицы не превышает расстояния между стенками, так как мы знаем, что частица заключена между ними. Поэтому величина равна или меньше

Положение частицы, конечно, может быть локализовано в более узких пределах. Но если задано, что частица просто заключена между стенками, ее координата х не может выйти за пределы расстояния между этими стенками. Следовательно, неопределенность, или отсутствие

знания, ее координаты х не может превышать величину I. Тогда неопределенность импульса частицы больше или равна

Импульс связан со скоростью по формуле

следовательно, неопределенность скорости

Если частица-электрон и расстояние между стенками равно см. то

Таким образом, если частица с массой электрона локализована в области, размеры которой порядка то говорить о скорости частицы можно лишь с точностью до см/с,

Используя результаты, полученные ранее, можно найти соотношение неопределенности для волны Шредингера в случае частицы, заключенной между двумя стенками. Основному состоянию такой системы соответствует смесь в равных долях решений с импульсами

(В классическом случае электрон мечется от стенки к стенке, причем его импульс, оставаясь все время равным по величине изменяет свое направление при каждом соударении со стенкой.) Так как импульс изменяется от до его неопределенность равна

Из соотношения де Бройля

а для основного состояния

В то же время

Следовательно,

Этот результат можно использовать для оценки наименьшего значения энергии, которым может обладать квантовая система. Ввиду того что импульс системы - неопределенная величина, эта энергия в общем случае не равна нулю, что радикально отличает квантовую систему от классической. В классическом случае энергия рассматриваемой частицы совпадает с ее кинетической энергией, и когда частица покоится, эта энергия обращается в нуль, Для квантовой системы, как было показано выше неопределенность импульса находящейся в системе частицы составляет

Импульс такой частицы нельзя определить точно, так как возможные его значения лежат в интервале шириной Очевидно, если нуль лежит посредине этого интервала (фиг. 127), то импульс будет изменяться по величине в пределах от нуля до Следовательно, минимальный возможный импульс, который можно приписать частице, равен в силу принципа неопределенности

При меньших значениях импульса принцип неопределенности нарушится. Энергию, соответствующую этому импульсу,

можно сравнить с наименьшей энергией, величину которой мы вычислили с помощью уравнения Шредингера, подбирая подходящую стоячую волну между стенками сосуда:

Ценность полученного результата состоит не в численном согласии, а в том, что нам удалось провести грубую оценку величины минимальной энергии, используя лишь принцип неопределенности. Кроме того, нам удалось понять, почему минимальное значение кинетической энергии квантовомеханической системы (в отличие от классической системы) никогда не равно нулю. Соответствующая классическая частица, заключенная между стенками, обладает нулевой кинетической

энергией, когда она находится в покое. Квантовая же частица не может покоиться, если она захвачена между стенками. Ее импульс или скорость существенно неопределенны, что проявляется в увеличении энергии, причем это увеличение в точности совпадает с тем значением, которое получается из строгого решения уравнения Шредингера.

Этот весьма общий результат имеет особенно важные следствия в том разделе квантовой теории, который соответствует классической кинетической теории, т. е. в квантовой статистике. Широко известно, что температура системы, как утверждает кинетическая теория, определяется внутренним движением составляющих систему атомов. Если температура квантовой системы высока, то нечто весьма похожее на это действительно имеет место. Однако при низких температурах квантовые системы не могут прийти к абсолютному покою. Минимальная температура соответствует наинизшему из возможных состояний данной системы. В классическом случае все частицы находятся в покое, а в квантовом - энергия частиц определяется из выражения (41.17), что не соответствует покою частиц.

Из всего сказанного может создаться впечатление, что мы уделяем слишком много внимания электронам, заключенным между двумя стенками. Наше внимание к электронам вполне оправдано. А к стенкам? Если проанализировать все рассмотренные ранее случаи, то можно убедиться в том, что вид силовой системы, будь то сосуд или что-нибудь иное, удерживающей электрон в ограниченной области пространства, не так уже существен.

Две стенки, центральная сила или различные препятствия (фиг. 128) приводят к примерно одинаковым результатам. Не столь уж важен вид конкретной системы, которая удерживает электрон. Гораздо важнее, что электрон вообще захвачен, т. е. его волновая функция локализована. В результате эта функция представляется в виде суммы периодических волн и импульс частицы становится неопределенным, причем

Проанализируем теперь с помощью принципа неопределенности одно типично волновое явление, а именно расширение волны после прохождения ею небольшого отверстия (фиг. 129). Это явление мы уже разбирали геометрическим способом, вычисляя расстояния, на

которых горбы пересекаются с впадинами., В том, что теперь результаты окажутся сходными, нет ничего удивительного. Просто одна и та же теоретическая модель описывается разными словами. Допустим, что электрон попадает в отверстие в экране, двигаясь слева направо. Нас интересует неопределенность положения и скорости электрона в направлении х (перпендикулярном направлению движения). (Соотношение неопределенности выполняется для каждого из трех направлений в отдельности: Ах-Архжк,

Обозначим ширину щели через эта величина является максимальной погрешностью определения положения электрона в направлении х, когда он проходил через отверстие, чтобы проникнуть за экран. Отсюда мы можем найти неопределенность импульса или скорости частицы в направлении я:

Следовательно, если мы допускаем, что электрон проходит сквозь отверстие в экране шириной мы должны признать, что его скорость при этом станет неопределенной с точностью до величины

В отличие от классической частицы квантовая не может, пройдя сквозь отверстие, дать на экране четкое изображение.

Если она движется со скоростью в направлении экрана, а расстояние между экраном и отверстием равно то она пройдет это расстояние за время

За это время частица сместится в направлении х на величину

Угловой разброс определяется как отношение величины смещения к длине

Таким образом, угловой разброс (интерпретируемый как половина углового расстояния до первого дифракционного минимума) равен длине волны, деленной на ширину отверстия, что совпадает с результатом, полученным ранее для света.

А что можно сказать об обычных массивных частицах? Являются ли они квантовыми частицами или частицами ньютоновского типа? Следует ли пользоваться механикой Ньютона в случае объектов обычных размеров и квантовой механикой в случае объектов, размеры которых малы? Мы можем считать все частицы, все тела (даже Землю) квантовыми. Однако, если размеры и масса частицы соизмеримы с размерами и массами, которые обычно наблюдаются в макроскопических явлениях, то квантовые эффекты - волновые свойства, неопределенности положения и скорости - становятся слишком малыми, чтобы быть обнаружимыми в обычных условиях.

Рассмотрим, например, частицу, о которой мы говорили выше. Допустим, что эта частица - металлический шарик от подшипника с массой в одну тысячную грамма (очень маленький шарик). Если мы локализуем его положение с точностью, доступной нашему зрению, в поле микроскопа, скажем с точностью до одной тысячной сантиметра, то локализованного на длине см, неопределенность скорости оказывается слишком маленькой величиной, чтобы быть обнаруженной при обычных наблюдениях.

Соотношения неопределенности Гейзенберга связывают не только положение и импульс системы, но и другие ее параметры, которые в классической теории считались независимыми. Одним из наиболее интересных и полезных для наших целей соотношений является связь между неопределенностями энергии и времени. Обычно ее записывают в виде

Если система находится в определенном состоянии в течение длительного промежутка времени, то энергия этой системы известна с большой точностью; если же она находится в этом состоянии в течение очень короткого интервала времени, то ее энергия становится неопределенной; этот факт точно описывается соотношением, приведенным выше.

Это соотношение обычно применяют при рассмотрении перехода квантовой системы из одного состояния в другое. Допустим, например, что время жизни какой-то частицы равно , т. е. между моментом рождения этой частицы и моментом ее распада проходит время порядка с. Тогда максимальная точность, с которой может быть известна энергия этой частицы, равна

что составляет весьма небольшую величину. Как мы увидим позднее, существуют так называемые элементарные частицы, время жизни которых порядка с (время между моментом рождения частицы и моментом ее аннигиляции). Таким образом, промежуток времени, в течение которого частица находится в определенном состоянии, очень мал, и неопределенность энергии оценивается как

Эта величина, 4-106 эВ (миллион электронвольт кратко обозначается символом МэВ), огромна; вот почему, как мы увидим позже, таким элементарным частицам, иногда называемым резонансами, приписывают не точное значение энергии, а целый спектр значений в довольно широком диапазоне.

Из соотношения (41.28) можно также получить так называемую естественную ширину уровней квантовой системы. Если, например, атом переходит с уровня 1 на уровень 0 (фиг. 130), то энергию уровня

Тогда разброс значений энергии этого уровня определяется из выражения:

Это типичная естественная ширина энергетических уровней атомной системы.